FOURTH RILEM INTERNATIONAL SYMPOSIUM

on

CREEP AND SHRINKAGE OF CONCRETE:
MATHEMATICAL MODELING

August 26-29, 1986

Z. P. Bažant, Editor

Department of Civil Engineering
and
Center for Concrete and Geomaterials
The Technological Institute
NORTHWESTERN UNIVERSITY
Evanston, Illinois 60201, USA

sponsored by
International Union of Research and Testing Laboratories
for Materials and Structures (RILEM)
supported by
U. S. National Science Foundation
under the auspices of
American Concrete Institute
dedicated to the memory of
ROBERT L'HERMITE
Contents

LIST OF PREREGISTERED PARTICIPANTS................................. xvii

OPENING LECTURE*

by Boris Bresler

MEMORIAL LECTURES

Robert L'Hermite and His Legacy*

by Maurice Fickelson

The Impact of Robert L'Hermite on the Evolution of Creep and Shrinkage Theory

by Zdeněk P. Bažant... 1

Douglas McHenry and His Legacy*

by Eivind Hogenstad

Hubert Rüsch and His Legacy*

by Hubert Hilsdorf

PART 1: STATE-OF-ART REPORT ON CREEP AND SHRINKAGE OF CONCRETE: MATHEMATICAL MODELING

INTRODUCTION.. 41

CHAPTER 1: PHYSICAL MECHANISMS AND THEIR MATHEMATICAL DESCRIPTION

Prepared by TC69 Subcommittee 1: J. F. Young (Chairman), Z. P. Bažant, J. W. Dougill, F. H. Wittmann and T. Tsubaki (principal author: J. F. Young)

1.1 INTRODUCTION.. 44

1.1.1 General Comments
1.1.2 Definitions of Creep Components
1.1.3 Transitional Hygral Creep

*Text not included in this volume (will appear in the Proceedings Volume)
1.1.4 Transitional Thermal Creep
1.1.5 Transitional Chemical Creep
1.1.6 Definitions of Shrinkage Components
1.1.7 Hydration (Autogeneous or Chemical) Shrinkage
1.1.8 Capillary (Plastic Drying) Shrinkage
1.1.9 Carbonation Shrinkage
1.1.10 Real and Apparent Mechanisms

1.2 STRUCTURAL LEVELS OF CONCRETE
1.2.1 Paste Microstructure
1.2.2 C-S-H
1.2.3 Porosity
1.2.4 Microstructural Models
1.2.5 Effect of Admixtures on Microstructure
1.2.6 Concrete Mesostructure

1.3 CHEMICAL AND PHYSICAL CHANGES OF THE MICROSTRUCTURE
1.3.1 Aging
1.3.2 Hydration
1.3.3 Carbonation
1.3.4 Stabilization

1.4 MECHANISMS ASSOCIATED WITH MOISTURE LOSS AND GAIN
1.4.1 Capillary Tension
1.4.2 Disjoining Pressure
1.4.3 Surface Tension of Solids
1.4.4 Loss of Interlayer Water
1.4.5 Stress-Induced Shrinkage

1.5 MASS TRANSFER MECHANISMS
1.5.1 Diffusion of Water
1.5.2 Diffusion of Solids

1.6 THERMALLY ACTIVATED PROCESS
1.6.1 Basic Model
1.6.2 Mathematical Descriptions

1.7 APPARENT MECHANISMS
1.7.1 Moisture and Temperature Gradients
1.7.2 Internal Cracking in Cement Paste and Concrete

1.8 BEHAVIOR OF CONCRETE UNDER SPECIAL CONDITIONS
1.8.1 Influence of Temperature Extremes
1.8.2 Influence of Fluctuating Stresses
1.8.3 Slow Changes of Load
1.8.4 Cyclic Loadings in the Range of Natural Frequencies
1.8.5 High Frequency and Impact Loadings
1.8.6 Effect of Stress Cycling on Basic and Drying Creep
1.8.7 Effect of Temperature and Moisture Fluctuations
1.8.8 Effect of Chemical Reactions

REFERENCES
CHAPTER 2: MATERIAL MODELS FOR STRUCTURAL CREEP ANALYSIS

Prepared by TC69 Subcommittee 2: Z. P. Bažant (Chairman)
J. W.Dougill, C. Huet, T. Tsubaki and F. H. Wittmann
(principal author: Z. P. Bažant)

2.1 INTRODUCTION... 80

2.2 CONCRETE AS AGING VISCOELASTIC MATERIAL............................. 81
 2.2.1 Compliance Function
 2.2.2 Principle of Superposition
 2.2.3 Differential-Type Constitutive Relations
 2.2.4 Incremental Quasi-Elastic Stress-Strain Relations
 2.2.5 Age-Adjusted Effective Modulus

2.3 TEMPERATURE AND HUMIDITY EFFECTS... 111
 2.3.1 Diffusion Theory, Residual Stresses and Cracking
 2.3.2 Temperature and Humidity Dependence of Creep Viscosities and Aging
 2.3.3 Shrinkage, Thermal Expansion, and Their Stress Dependence
 2.3.4 Effect of Strain-Softening (Cracking)
 2.3.5 Pickett Effect (Drying Creep)
 2.3.6 Behavior at High Temperatures

2.4 NONLINEAR EFFECTS AND THERMODYNAMIC ASPECTS...................... 143
 2.4.1 Deviations from Linearity (Principle of Superposition)
 2.4.2 Viscoplasticity and Cyclic Creep
 2.4.3 Cracking and Strain-Softening
 2.4.4 Thermodynamics of Constitutive Relations
 2.4.5 Thermodynamics of Creep Mechanism

2.5 FORMULATION OF COMPLIANCE FUNCTION AND SHRINKAGE.............. 153
 2.5.1 Separation of Instantaneous Deformation and Creep
 2.5.2 Influencing Factors
 2.5.3 Constitutive Properties
 2.5.4 Mean Cross-Section Behavior at Drying
 2.5.5 Rate-of-Creep Method and Related Formulations
 2.5.6 Practical Creep Prediction Models
 2.5.7 Input of Material Parameters for Structural Analysis
 Computer Programs

2.6 CONCLUSION.. 187

BIBLIOGRAPHY.. 189

APPENDIX.. 225

NUMBERED FOOTNOTES.. 232
CHAPTER 3: CREEP AND SHRINKAGE ANALYSIS OF STRUCTURES

Prepared by TC69 Subcommittee 3: O. Buyukozturk (Chairman)
Z. P. Bazant, M. A. Chiorino, W. Dilger, W. Haas,
J.-E. Jonasson and J. Lazić
(principal authors: Z. P. Bazant and O. Buyukozturk)

3.1 INTRODUCTION .. 233

3.2 LINEAR METHODS .. 234
 3.2.1 Basic Assumptions and Code Recommendations
 3.2.2 Numerical Methods Based on Hereditary Integrals
 3.2.3 Numerical Methods Based on Degenerate Kernel
 3.2.4 Simplified Algebraic Methods Permitting Any $J(t,t')$
 3.2.5 Methods Based on Simplified $J(t,t')$ and Differential Equations
 3.2.6 Elastic-Viscoelastic Analogy for Aging Materials
 3.2.7 Homogeneous Structures and McHenry's Analogy
 3.2.8 Conversion of Inelastic Strains to Applied Loads
 3.2.9 Variational Principles

3.3 NONLINEAR METHODS .. 260
 3.3.1 Nonlinearity Due to Humidity and Temperature Variation
 3.3.2 Nonlinearity Due to Cracking or Strain-Softening
 3.3.3 Nonlinearity Due to Cyclic Loading
 3.3.4 Nonlinearity at Unloading and Adaptation
 3.3.5 Nonlinearity at High Stress and Multiaxial Visco-plasticity

3.4 EFFECTS IN AGING LINEARLY VISCOELASTIC STRUCTURES 265
 3.4.1 Relaxation and Shrinkage Stresses
 3.4.2 Composite and Inhomogeneous Cross Sections of Beams
 3.4.3 Inhomogeneous Redundant Beam Structures
 3.4.4 Steel-Concrete Systems (Cable-Stayed Bridges)
 3.4.5 Change of Structural System
 3.4.6 Cyclically Built Structures
 3.4.7 Shored Construction of Slab Buildings
 3.4.8 Box Girder Bridges and Shear Lag
 3.4.9 Stresses in Shells, Containments, Tanks and Slabs
 3.4.10 Shear Deflections and Torque
 3.4.11 Thermal Stresses in Nuclear Containments and Other Structures
 3.4.12 Effect of Hydration Heat in Dams
 3.4.13 Periodic Environment and Spectral Structural Analysis
 3.4.14 Viscoelastic Stability: Columns and Shells

3.5 NONLINEAR EFFECTS IN STRUCTURES ... 290
 3.5.1 Buckling and Long-Time Stability
 3.5.2 Effect of Cracking in Beams, Slabs, Shells, and Reactor Vessels
 3.5.3 Stress-Induced Shrinkage (or Swelling) and Thermal Expansion (Contraction)
 3.5.4 Effect of Cyclic Creep on Bridge Deflections
 3.5.5 Effect of Clay Consolidation in Foundation
3.5.6 Viscoplastic Analysis and High Temperature Behavior

3.6 DESIGN FOR STOCHASTIC BEHAVIOR AND OBSERVATIONS ON STRUCTURES ... 298

3.7 CONCLUDING REMARKS .. 299

REFERENCES ... 301

CHAPTER 4: FINITE ELEMENT ANALYSIS OF CREEP AND SHRINKAGE

Prepared by TC69 Subcommittee 4: C. A. Anderson (Chairman), Z. P. Bažant, O. Buyukozturk, J.-E. Jonasson and K. Willam (principal author: C. A. Anderson)

4.1 INTRODUCTION ... 311

4.2 FORMULATION OF FINITE ELEMENT EQUATIONS FOR CREEP ANALYSIS OF STRUCTURES 314

4.3 FINITE ELEMENT SPATIAL DISCRETIZATION. 322
 4.3.1 Spatial Discretization for Combined Creep and Moisture Diffusion in Concrete
 4.3.2 Spatial Discretization for Combined Creep and Buckling of Concrete Slab
 4.3.3 Modeling Concrete Cracking and Interface Slip

4.4 TIME DISCRETIZATION... 339
 4.4.1 The Linear Aging Model
 4.4.2 Age Adjusted Effective Modulus and Steady State Creep Models
 4.4.3 The Elastic-Viscous Creep Model (Simplified Chain Model)

4.5 APPLICATIONS ... 349
 4.5.1 Viscoelastic Creep of a Concrete Test Specimen at Elevated Temperature
 4.5.2 The Effect of Tendon Rupture in a Prestressed Concrete Reactor Vessel (PCRV)
 4.5.3 Creep Buckling of a Concrete Slab Imbedded in a Viscous Medium

REFERENCES ... 372

COMPUTER CODE .. 376

CHAPTER 5: PROBABILISTIC MODELS

5.1 INTRODUCTION .. 383
5.2 DETERMINISTIC AND PROBABILISTIC MODELS 386
 5.2.1 Definitions
 5.2.2 Stochastic Nature of Creep
 5.2.3 Remarks

5.3 PROBABILISTIC CONSTITUTIVE MODELS OF CREEP 388
 5.3.1 Poisson Process and Markov Process Models
 5.3.2 Gamma Process Model
 5.3.3 White Noise Process Model
 5.3.4 Remarks

5.4 STATISTICAL ASPECTS OF CREEP AND SHRINKAGE 399
 5.4.1 Experimental Study of Creep and Shrinkage
 5.4.2 Statistical Extrapolation of Creep and Shrinkage
 by Regression
 5.4.3 Bayesian Statistical Extrapolation of Creep
 5.4.4 Bayesian Statistical Extrapolation of Shrinkage
 5.4.5 Remarks

5.5 PROBABILISTIC ANALYSIS FOR INTERNAL UNCERTAIN FACTORS 411
 5.5.1 Effect of Stochastic Nature of Creep
 5.5.2 Analysis of a Reinforced Concrete Beam-Column
 5.5.3 Remarks

5.6 PROBABILISTIC ANALYSIS FOR EXTERNAL UNCERTAIN FACTORS 416
 5.6.1 Effect of Stochastic Environmental Conditions
 5.6.2 Spectral Analysis Methods
 5.6.3 Spectral Analysis by the Finite Element Method
 5.6.4 Spectral Analysis by the Boundary Element Method
 5.6.5 Analysis Method for Model Uncertainty
 5.6.6 Analysis of Precast Segmental Bridges
 5.6.7 Analysis of Concrete Box Girders
 5.6.8 Remarks

5.7 SUMMARY AND CONCLUSIONS 437

BIBLIOGRAPHY .. 439

CONCLUSION ... 455

PART 2: INVITED DISCUSSER'S REPORTS AND LECTURES ON FURTHER VIEWPOINTS

SESSION 1

Discusser's Report: Mechanisms and Their Mathematical............. 459
 Descriptions
 by L. J. Parrott
Further Viewpoints: Mechanisms of Creep and Shrinkage........ 469
by F. H. Wittmann

SESSION 2

Discusser's Report: Material Models for Structural Analysis... 477
by Hubert K. Hilsdorf

Further Viewpoints: Part 1: Shrinkage of Structural Concrete.. 493
Part 2: Methods of Calculation of Moisture Content of
Concrete
by Jan-Erik Jonasson

SESSION 3

Discusser's Report: Creep Analysis of Structures.............. 499
by Hans W. Reinhardt

Further Viewpoints: Creep Analysis of Structures............. 511
by Walter H. Dilger

SESSION 4

Discusser's Report: Finite Elements......................... 623
by David W. Murray

Further Viewpoints: Analysis of Creep and Cracking in
Concrete Members.. 527
by René de Borst and P. van den Berg

SESSION 6

Discusser's Report: Some Comments on Probabilistic Models..... 539
by Steven Krenk

Further Viewpoints: Uncertainty of Creep and Shrinkage
Predictions... 553
by Henrik Madsen

PART 3: CONTRIBUTED PAPERS*

Creep of Concrete with Simultaneous Penetration
of Seawater.. 559
by J. P. G. Mijnsbergen and H. W. Reinhardt

*Accepted on the basis of one-page abstracts (also Part 4)
Thermal Stresses in Massive Concrete Structures
 Calculated with a Linear Creep Law of Integral Type.............723
 by Mats Emborg

A Model for the Deformations of Two-Phase Concretes
 Under Load... 733
 by S. Popovics

Creep Function for Aging Concrete................................ 743
 by Seiki Nagamatsu, Yoshiaki Sato and Y. Takeda

An Equivalent Loading Method for the Analysis of Time
 Dependent Effects on Bridges..................................755
 by F. A. Branco

Creep and Shrinkage Analyses of Simple Span Precast
 Prestressed Bridge Girders Made Continuous.................... 765
 by Joseph D. Glikin and Ralph G. Oesterle

Field Study of Creep and Shrinkage of a Very High Strength
 Concrete... 777
 by Pierre LaPlante and Pierre-Claude Aitcin

Bond Creep Under Long-time Static and Dynamic Stresses...........787
 by F. S. Rostasy and A. Rohling

An Incremental Model for Nonlinear Time-Dependent
 Behavior of Concrete in Compression.......................... 797
 by I. Carol and J. Murcia

Effects of Time-Dependent Behavior of Concrete in
 Prestressed Concrete Members.................................. 807
 by H. Trost

A New Non-linear Model for the Delayed Response of
 Concrete: the Aging Viscoelastic Behaviour with
 Loading Function
 by C. Huet

Model of Delayed Behaviour of Concrete Taking into
 Account Local Humidity...................................... 815
 by P. Acker

Application of Variational Methods to the Calculation of
 Delayed Effects in Concrete Structures....................... 825
 by M. Y. Lau

Viscoelastic Analysis of Concrete Box Structures with
 Consideration of Material Inhomogeneities, Differential
 Shrinkage and Non-Linear Thermal Variations................... 837
 by P. G. Malerba and F. Mola
Creep of Concrete During Unsteady Temperature Conditions and Its Mathematical Modeling.......................... 571
by K. Kordina, W. Wydra and C. Ehm

Creep of Concrete with Variable Moisture Content at Elevated Temperature up to 90°C......................... 581
by F. S. Rostasy and H. Budelmann

Rheological Model with Strain Softening and Experimental Algorithm for Structural Analysis...................... 591
by Jenn-Chuan Chern and Yeong-Gee Wu

Influence of Concrete Creep on Failure of Gabled Hypar Roofs.. 601
by S. Gallegos and W. C. Schnobrich

Application of Some Time-Dependent Prediction Models to the Analysis of Structural Elements Under Sustained Load....... 609
by Bernard Espion

Analysis of Aging Viscoelastic Structures with N-redundant Elastic Restraints.................................... 623
by M. A. Chiorino, G. Creazza, F. Mola and P. Napoli

Constitutive Relations for Delayed Elasticity...................... 645
by H. S. Müller

The Determination of the Strain and Stress States in Concrete Structures by the Finite Element Method........... 655
by Z. Praščević

Time History Analysis of Reinforced Concrete Frames.......... 665
by J. Ožbošt

Effects of Shear Lag and Randomness of Material Creep Properties on Deflections and Stresses in Prestressed Concrete Box Girder.. 675
by V. Křístek and Z. P. Bažant

Creep Analysis of Concrete Structures by the Stochastic Finite Element Method................................... 685
by Tatsuya Tsubaki

Nondeterministic Analysis of Long-term Behaviour of RC Beams.. 695
by B. Teplý, A. Materna, O. Novák, and Z. Keršner

Probabilistic Deflection Analysis on a Microcomputer with Reference to Creep and Shrinkage......................... 705
by G. Singh

Effect of High Temperature and Cracking on Creep/Relaxation of Concrete Structures.................................. 715
by P. D. Bhat and F. J. Vecchio
Numerical Simulation of Drying and Shrinkage of Concrete with a Multiphase Inhomogeneous Material Mode**
by C. E. Majorana, B. A. Schrefler and M. Strada

Sensitivity of Uniaxial Failure on Spatial Variation of Initial Geometry, Initial Microcrack Density, and Time-Dependent Material Properties......................... 847
by R. B. Stout

PART 4. SHORT CONTRIBUTIONS

Creep in Structures with Variable Structural System............. 859
by Menditto Giovanni, Dezi Luigino, and Tarantino A. Marcello

Creep Stresses in Reinforced Concrete Slabs..................... 869
by B. R. Seth

Further Development of "The Improved Dischinger Method"........ 873
by Rickard Wilson

Effect of Cracking on Moisture Diffusion Through Concrete and on Shrinkage.. 879
by Zdeněk P. Bažant, Siddik Sener and Jin-Keun Kim

Creep of Concrete in Splitting, Compression and Bending: A Finite Element Application......................... 885
by Musa R. Resheidat

Computer Method for Creep and Shrinkage Stresses and Strains of Prestressed Concrete Structural Members.......... 891
by Musa R. Resheidat

Discussing the Problem of Inelastic Deformation of the Lightweight Concrete Under Long-Term Loading.............. 897
by Xiao Yu

Analysis of Reinforced Concrete Slabs and Shells by Finite Strip Method**
by Dragan Milašinović

Time Dependent Behaviour of Reinforced Concrete Columns**
by H. M. Fahmi and N. N. Amso

Constitutive Model for Nonlinear Aging Viscoelasticity of Concrete... 907
by Zdeněk P. Bažant and Santosh Prasannan

**Text not received before printing