Investigation of an alternative pyrometallurgical route for titanium production

Doctoral Thesis (Dissertation)

to be awarded the degree

Doctor of Engineering (Dr.-Ing.)

Submitted by

Mahdi Farhani

from Tehran

approved by the Faculty of Natural and Materials Science,

Clausthal University of Technology

Date of oral examination 23.05.2017

Contents

	Abstract	
1	Introduction	1
2	Literature Review	3
	2.1 The Kroll process	
	2.2 TiCl ₄ -based processes	
	2.2.1 The Armstrong/ITP method	
	2.2.2 Other TiCl ₄ -based methods	
	2.3 TiO ₂ -based processes	
	2.3.1 FFC/Cambridge method	.12
	2.3.2 OS method	
	2.3.3 Other TiO ₂ -based methods	
	2.4 The proposed process	.16
	2.4.1 Production of titania slag	.16
	2.4.2 Aluminothermic reduction	.23
	2.4.3 Refining	.27
	2.5 Goals of the present research	.49
3	Production of modified titania slag	51
	3.1 Experimental methods	.51
	3.1.1 Reduction of iron in powder experiments	.51
	3.1.2 Electrostatic separation	.55
	3.1.3 Reduction of iron in pellet experiments	.56
	3.1.4 Calculation of the reduced fraction	.57
	3.1.5 Separation melting	.58
	3.2 Results and discussion	.59
	3.2.1 Ilmenite powder reduction	.59
	3.2.1.1 Excess coal separation	.70
	3.2.2 Ilmenite pellets reduction	
	3.2.3 Separation melting	.74

4 Aluminothermic reduction	86
4.1 Experimental methods	86
4.2 Results and discussion	88
5 Refining the aluminothermic pre-alloy	104
5.1 Experimental methods	104
5.1.1 Making the crucibles	104
5.1.2 Melting Ti-Al alloys in CaO crucible	106
5.2 Results and discussion	108
5.2.1 Pure CaO crucibles	108
5.2.2 Melting the aluminothermic metal in pure CaO crucib	les 110
5.2.3 Melting Ti-Al alloys in CaO crucible	115
5.2.3.1 Studying the crucibles after the experiments	124
5.2.4 Melting Ti-Al-O in CaO-based crucibles	127
5.2.4.1 CaO-TiO ₂ crucible	127
5.2.4.2 CaO-ZrO ₂ -CaF ₂ crucible	130
5.2.4.3 CaO-graphite crucible	134
5.2.4.4 CaO-tall oil crucible	134
6 Conclusions	141
7 Further research	143
8 References	145
List of figures 1	
List of tables	
Curriculum Vitae	