CONFERENCE FOR
WIND POWER DRIVES

CWD 2017
Aachen 7th-8th March

Conference Proceedings
Aachen, 7th – 8th of March 2017

Published by
Univ.-Prof. Dr.-Ing. Dirk Abel (Institut für Regelungstechnik)
Univ.-Prof. Dr.-Ing. Christian Brecher (Werkzeugmaschinenlabor der RWTH Aachen)
Univ.-Prof. Dr. ir. Rik W. De Doncker (Power Generation and Storage Systems)
Univ.-Prof. Dr.-Ing. Dr. h.c. Kay Hameyer (Institut für elektrische Maschinen)
Univ.-Prof. Dr.-Ing. Georg Jacobs (Chair for Wind Power Drives)
Univ.-Prof. Dr.-Ing. Antonello Monti (Automation of Complex Power Systems)
Univ.-Prof. Dr.-Ing. Wolfgang Schröder (Aerodynamisches Institut)

Supported by

winergy
Table of Contents

Wind turbine gearboxes

Comparison of behavior during torque reversal driven event on nacelle dynamometer and field turbine

Non-torque loads in drivetrains – A study on the effective reduction of gearbox loads and the improvement of the dynamic system behaviour

Standardization of the wind gearbox platforms to maximize the cost advantage and reliability based on the extensive data base in the wind field

How does the application of actual standards & guidelines contribute to robust bearing solution in Multi-MW wind turbine gearboxes?

Reliability

Indirect rotor load measurement at structural components in the drive train of wind turbines

Probabilistic evaluation of gearbox reliability

Wind turbine control strategy deployment concerning remaining useful lifetime prognostic model

Electric systems

Dynamic voltage support of DFIG wind power plants

Design and performance evaluation of a grid emulator based on a 3L-NPC converter

An impedance-based analysis approach to analyse harmonic oscillations in DFIG equipped and HVDC connected offshore wind farms

Torsional vibrations in multi-megawatt wind turbine induction generators

Short-circuit faults and their influence on the drive-train of wind turbines

Modelling and simulation

Modelling the failure behaviour of wind turbines

FE simulation of creep on rolling-bearing-supported helical planetary gears

Analysis of a direct drive wind turbine with a multi body simulation model and comparison with measurement data

Possibilities and limitations of the load determination for wind turbines using the multibody-system simulation

Full scale system simulation of a 2.7 MW wind turbine on a system test bench
Bearings and WEC ... 255
3D characterization of WEC using X-ray tomography 257
WEC reproduction on large size roller bearings 267
WEC review – field experience from a gearbox manufacturer 281
Different performance aspects of black oxide coating for bearing applications 291

Plain bearings in WTG gearboxes ... 309
Hydrodynamic plain bearings in planetary gearboxes of wind power plants – aspects of material choice and design ... 311
Plain bearings for wind turbine gearboxes - trajectory towards technology readiness ... 327
Hydrodynamic plain bearings in a main gearbox of a 6 MW wind turbine 343

Condition monitoring systems ... 357
Condition monitoring of wind turbine drive trains by normal behaviour modelling of temperatures ... 359
Torque measurement uncertainty in multi-MW nacelle test benches 373
Condition cased maintenance of wind turbines by 24/7 monitoring of oil quality and additive consumption: Identification of critical operation conditions and determination of the next oil change ... 391

Materials in WTG .. 407
Numerical evaluation of steel cleanliness of large mainbearings for multi megawatt wind energy turbines ... 409
Damage tolerant design of structural components made of high strength cast iron ... 425
Material technology plays a key role in improving torque density in wind turbine gearboxes ... 439
Application of fracture mechanics based methods in life cycle management of wind turbines ... 453

Gearbox – Planetary stage ... 465
Tolerances in planetary gears - determination of load distribution using statistical approaches ... 467
A systematic approach for optimizing planetary gear sets for low vibrations 483
Validation of planetary bearing loads in wind turbine gearboxes on a 4 MW system test bench ... 499
Wind 4.0 .. 513

Connection of wind farms to an energy efficient and safe internet for energy
communication network ... 515

Intelligent gearbox: A contribution to the reduction of the cost of energy 531

A Case Study of Evaluating and Augmenting Test Bench Capability for IEC
Dynamic Load Cases .. 545

Blade and main bearings ... 555

Providing evidence for the operation of a new rotor bearing design 557

State-of-the-art design process for pitch bearing applications of multi-MW wind
turbine generators .. 571

Sensitivity of wind turbine drive train resonances on the mechanical properties
of sub-components .. 591