Contents

Preface — v
List of contributing authors — xiii

Part I: High-technology materials

1 Lithium ion–conducting oxide garnets — 3
 1.1 Introduction — 3
 1.2 Crystal structure of garnets — 4
 1.3 Natural and synthetic garnets — 6
 1.3.1 Natural garnets — 6
 1.3.2 Synthetic garnets — 7
 1.4 Solid Li-ion conductors — 8
 1.5 Introduction on Li-oxide garnets — 8
 1.5.1 Structural features of Li-oxide garnets — 9
 1.6 Systematic of Li-oxide garnets — 11
 1.6.1 Li$_3$Ln$_2$M$_{10+}$O$_{12}$ ($\text{Ln} = \text{Y, Pr, Nd, Sm–Lu}; \text{M}^{6+} = \text{Te}^{6+}, \text{W}^{6+}$) (Li$_3$ phases) — 11
 1.6.2 Li$_3$La$_2$M$_{5+}$O$_{12}$ ($\text{M}^{5+} = \text{Nb}^{5+}, \text{Ta}^{5+}, \text{Sb}^{5+}, \text{Bi}^{5+}$) (Li$_3$ phases) — 11
 1.6.3 Li$_6$A$_2$La$_2$M$_{5+}$O$_{12}$ ($\text{A}^{2+} = \text{Mg}^{2+}, \text{Ca}^{2+}, \text{Sr}^{2+}, \text{Ba}^{2+}; \text{M}^{5+} = \text{Nb}^{5+}, \text{Ta}^{5+}$) (Li$_6$ phases) — 12
 1.6.4 Li$_5$La$_2$O$_{12}$ ($\text{M}^{6+} = \text{Zr}^{6+}, \text{Hf}^{6+}, \text{Sn}^{6+}$) (Li$_5$ phases) — 12
 1.6.5 Li-oxide garnets with space group $\overline{4}3d$ — 14
 1.7 Outlook — 16
 1.8 Conclusions — 16
 Acknowledgments — 16
 References — 16

2 Olivine-type battery materials — 23
 2.1 Introduction — 23
 2.2 Olivine in nature — 23
 2.3 LiFePO$_4$ olivine — 27
 2.3.1 Synthesis — 27
 2.3.2 Impurities and defects — 27
 2.3.3 Electrochemical properties — 29
 2.3.4 Carbon coating — 31
 2.3.5 Aging — 32
 2.4 Other Li-based olivines — 34
 2.4.1 Li(Mn,Fe)PO$_4$ olivines — 34
 2.4.2 LiCoPO$_4$ and LiNiPO$_4$ olivines — 35
3 Natural and synthetic zeolites — 41
3.1 History and definitions — 41
3.2 The zeolite structure — 44
3.3 Natural occurrence of zeolites — 47
3.3.1 Structural variability of the alumosilicate zeolites — 48
3.3.2 Compositional variability of the framework — 48
3.3.3 Compositional variability of the cations occupying the pore volume — 49
3.4 Applications — 49
3.4.1 Ion exchange — 50
3.4.2 Adsorption — 50
3.4.3 Catalysis — 51
3.5 Synthesis of zeolites — 52
3.6 Recent developments — 53
3.6.1 Synthesis of zeolite materials — 53
3.6.2 Applications — 61
3.7 Outlook — 66
References — 67

4 Microstructure analysis of chalcopyrite-type CuInSe2 and kesterite-type Cu2ZnSnSe4 absorber layers in thin film solar cells — 73
4.1 Introduction — 73
4.2 Experimental — 77
4.2.1 Depth-resolved grazing incidence X-ray diffraction — 77
4.2.2 Microstructure analysis — 78
4.3 Summary — 95
References — 96

5 Surface-engineered silica via plasma polymer deposition — 99
5.1 Plasma polymerization — 99
5.2 Polymer plasma synthesis of amine-functionalized silica particles — 100
5.3 Polymer plasma synthesis of sulfonate-functionalized silica particles — 103
5.4 Plasma polymer synthesis of hydrophobic films on silica particles — 107
References — 110
6 Crystallographic symmetry analysis in NiTi shape memory alloys — 113
6.1 Introduction — 113
6.2 Elementary Landau theory — 115
6.3 M-point transverse distortion modes — 123
6.4 F-point strain distortion modes — 125
6.5 Mode coupling and invariants in Landau free-energy polynomial — 126
6.6 Model of biquadratic order parameter coupling — 128
Acknowledgment — 132
References — 133

Part II: Environmental mineralogy

7 Gold, silver, and copper in the geosphere and anthroposphere: can industrial wastewater act as an anthropogenic resource? — 137
7.1 Introduction — 137
7.2 Gold, silver, and copper in the geosphere — 138
7.2.1 Gold (Au) — 138
7.2.2 Silver (Ag) — 139
7.2.3 Copper (Cu) — 139
7.3 Gold, silver, and copper in the anthroposphere — 140
7.3.1 Synthesis of gold, silver, and copper phases from aqueous solutions — 140
7.3.2 Wastewater: an anthropogenic resource for gold, silver, and copper? — 144
7.4 What do/did we learn? — 146
Acknowledgments — 147
References — 147

8 Applied mineralogy for recovery from the accident of Fukushima Daiichi Nuclear Power Station — 153
8.1 Introduction — 153
8.2 Mineralogical issues on- and off-site of the FDNPS — 154
8.2.1 On-site — 154
8.2.2 Off-site — 157
8.3 Case studies — 159
8.3.1 Selection of adsorbents and processes for water treatment on site — 159
8.3.2 Solidification of the spent adsorbents for safe and economical storage and disposal — 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.3 Identification of the host mineral for Cs retention in off-site soils</td>
<td>163</td>
</tr>
<tr>
<td>8.4 Concluding remark</td>
<td>167</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>167</td>
</tr>
<tr>
<td>References</td>
<td>167</td>
</tr>
<tr>
<td>9 Phosphates as safe containers for radionuclides</td>
<td>171</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>171</td>
</tr>
<tr>
<td>9.2 Nuclear waste management</td>
<td>171</td>
</tr>
<tr>
<td>9.3 Why single-phase phosphate ceramics?</td>
<td>172</td>
</tr>
<tr>
<td>9.4 Crystal structures and properties</td>
<td>174</td>
</tr>
<tr>
<td>9.4.1 Monazite type</td>
<td>174</td>
</tr>
<tr>
<td>9.4.2 Apatite type</td>
<td>175</td>
</tr>
<tr>
<td>9.4.3 Xenotime type</td>
<td>176</td>
</tr>
<tr>
<td>9.4.4 Kosnarite type</td>
<td>177</td>
</tr>
<tr>
<td>9.4.5 Florencite type</td>
<td>179</td>
</tr>
<tr>
<td>9.4.6 Th-phosphate-diphosphate (β-TPD) type</td>
<td>180</td>
</tr>
<tr>
<td>9.4.7 Specific structural features of monazite</td>
<td>181</td>
</tr>
<tr>
<td>9.5 Chemical thermodynamics of single phases and solid solutions</td>
<td>185</td>
</tr>
<tr>
<td>9.6 Computer simulations as a valuable supplement to experimental results</td>
<td>187</td>
</tr>
<tr>
<td>9.7 Summary</td>
<td>189</td>
</tr>
<tr>
<td>References</td>
<td>190</td>
</tr>
<tr>
<td>10 Immobilization of high-level waste calcine (radwaste) in perovskites</td>
<td>197</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>10.2 Immobilization of radioactive waste in ceramics</td>
<td>198</td>
</tr>
<tr>
<td>10.2.1 Supercalcine ceramic</td>
<td>198</td>
</tr>
<tr>
<td>10.2.2 Applications and phase assemblages of synroc ceramics</td>
<td>199</td>
</tr>
<tr>
<td>10.3 Crystal chemistry of perovskite-type structures suitable for the fixation of radwaste</td>
<td>203</td>
</tr>
<tr>
<td>10.3.1 Perovskite minerals and their technical analogues</td>
<td>203</td>
</tr>
<tr>
<td>10.3.2 Artificial ternary actinide perovskites</td>
<td>212</td>
</tr>
<tr>
<td>10.4 Discussion and summary</td>
<td>214</td>
</tr>
<tr>
<td>References</td>
<td>215</td>
</tr>
<tr>
<td>11 Titanate ceramics for high-level nuclear waste immobilization</td>
<td>223</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>223</td>
</tr>
<tr>
<td>11.2 Multibarrier repository</td>
<td>224</td>
</tr>
<tr>
<td>11.3 Design and fabrication of titanate ceramics</td>
<td>225</td>
</tr>
<tr>
<td>11.4 Radiation resistance</td>
<td>229</td>
</tr>
</tbody>
</table>
Part III: Biomineralization, biomimetics, and medical mineralogy

12 Patterns of mineral organization in carbonate biological hard materials — 245
12.1 Introduction — 245
12.2 Composite nature of biological hard tissues — 245
12.3 Characteristic basic mineral units in gastropod, bivalve, and brachiopod shells — 248
12.4 Carbonate hard tissue microstructures and textures, difference in crystal co-orientation strength — 252
12.5 Biomaterial functionalization through carbonate crystal orientation variation — 260
12.5.1 Calcitic tooth of the sea urchin P. lividus — 261
12.5.2 Shells of H. ovina and M. edulis — 262
12.5.3 Calcite in the tergite and mandible exocuticula of the isopod species Porcellio scaber and Tylos europaeus — 262
12.6 Concluding summary — 264
Acknowledgments — 267
References — 267

13 Sea urchin spines as role models for biological design and integrative structures — 273
13.1 Introduction — 273
13.2 Properties related to composition and nanostructure — 274
13.3 Properties related to design — 276
13.4 Biomimetic materials for energy dissipation — 280
13.5 Conclusions and outlook — 281
Acknowledgments — 282
References — 282

14 Nacre: a biomineral, a natural biomaterial, and a source of bio-inspiration — 285
14.1 Introduction — 285
14.2 Nacre: a biomineral — 285
14.2.1 Composition of nacre — 285
14.2.2 Multiscale structure of an iridescent biomineral — 286