Contents

Preface v

Volume 1: Chapters 1–18

1 Ionized gases and plasmas—Historical overview, basic concepts, and applications 1
 Preamble 1
 1.1 Introduction 3
 1.1.1 Historical perspective and development 4
 1.2 Ionized gases and plasmas 8
 1.2.1 Plasma generation and occurrence 11
 (a) Thermal ionization of a gas 12
 (b) Impact and radiative ionization 14
 (c) Plasmas not in TE 17
 (d) Density and temperature of typical plasmas 18
 1.3 Plasma oscillations 20
 1.3.1 Qualitative description 20
 (a) Oscillations in an unbounded plasma 21
 (b) Oscillations in a bounded plasma 22
 (c) Nonlinear electron plasma oscillation in one-d 23
 1.3.2 Small-amplitude oscillations 24
 1.4 Characteristic interaction lengths 27
 1.4.1 Landau and Debye lengths 28
 1.4.2 Simple models for Debye shielding 30
 (a) Internal neutrality in a plasma 30
 (b) Electron sheath at a plasma and vacuum boundary 32
 1.4.3 Positional correlations in a plasma 33
 (a) Analysis of Debye shielding and correlations 33
 (b) Exact shielding distance; ion-ion correlations 36
 (c) Kinetic and potential energies; the plasma parameter 37
 1.5 Collisonal interactions in a plasma 38
 1.5.1 Electron-ion collisions 38
 1.5.2 Weakly-ionized gases and ionization degree 44
 1.6 Classification of plasmas 50
 1.7 Plasmas in magnetic fields 53
(c) Thermal conductivity 128
(d) Viscosity 129

2.3.2 Elements of transport in fully-ionized plasmas 130
(a) Unmagnetized plasma—Dominant transport coefficients 131
(b) Collisional diffusion across a B_0-field 133
(c) Uniformly magnetized plasma—Dominant transport coefficients 135
(d) Toroidal (tokamak) confinement 136

2.3.3 The Braginskii transport coefficients 137
(a) Unmagnetized plasma ($B_0 = 0$) 138
(b) Strongly-magnetized plasma ($\omega_{ce} \tau_e \gg 1$) 142
(c) Entropy balance equation 150
(d) Classical diffusion in a strong-magnetic field 153

2.4 Plasmas far from TE 156
2.4.1 "Anomalous" transport 156
2.4.2 Convective cells and Bohm diffusion 158

2.5 "Collisionless" collective modes 162
2.5.1 MHD in high-temperature fully-ionized plasmas in MCF 162
2.5.2 Mega-Gauss \vec{B}-field generated in intense laser-plasma interactions 170

2.6 Problems 173
P2-1 The momentum density equation and the force density equation 173
P2-2 Conservation of ordered kinetic energy and internal heat kinetic energy 173
P2-3 Hydrodynamic equations from the Vlasov equation 173
P2-4 Electrical conductivity for very weakly-ionized plasmas in \vec{B}_0 174
P2-5 Particle diffusion current density due to collisions 174
P2-6 Solution of the linear diffusion equation 174
P2-7 Nonlinear diffusion equations 175
P2-8 Ambipolarity of D_\perp 175
P2-9 Electron conductivity and resistivity when $(\omega_{ce} \tau_e) \gg 1$ 175
P2-10 Viscosities and viscous force densities 176
P2-11 Irreversible heat generation due to viscosity, Q^vis 177
P2-12 Neglecting the viscous force density 177
P2-13 Deriving the convective cell mode 177
P2-14 Validation of single-fluid MHD models 178

Chapter 2. Bibliography 180

3 Collective dynamics in plasmas—II. Some basic fluid modes 181
Preamble 181
3.1 Introduction 182
3.2 The single-fluid MHD model 182
3.2.1 Wave dynamics in ideal MHD 185
(a) The Alfvén wave 186
(b) The sound wave in ideal ($\sigma = \infty$) MHD 190
(c) The magnetoacoustic wave 191
3.2.2 Nonlinear aspects of MHD waves
(a) Nonlinear coupling of shear Alfvén and sound waves in ideal MHD

3.3 The multi-fluid hydrodynamic model
3.3.1 Cold, unmagnetized plasma and strongly magnetized electron beam
(a) Transverse EM (TEM) waves
(b) ES electron plasma oscillations (EPO)
(c) One-d electron beam waves

3.3.2 Thermal pressure and ES waves in $\vec{B}_0 = 0$
(a) Electron plasma waves (EPW)
(b) Ion-acoustic waves (IAW)
(c) Collisional effects

3.3.3 The cold, drift-free electron plasma in \vec{B}_0
(a) Waves propagating parallel to \vec{B}_0
(b) Waves propagating perpendicular to \vec{B}_0
(c) Waves at any angle to \vec{B}_0

3.3.4 Thermal pressure effects on waves in \vec{B}_0
(a) The MHD regime
(b) ES ion-cyclotron waves (ES-ICW)
(c) ES upper-hybrid waves (ES-UHW)

3.3.5 Bounded and inhomogeneous plasmas
(a) Electron beam instabilities and devices
(b) Resonances and plasma heating
(c) The drift wave and drift wave instability

3.4 Problems
P3-1 Finite conductivity damping of Alfvén waves
P3-2 Linearization of the one-d (along \vec{B}_0) MHD equations
P3-3 $\vec{J} \times \vec{B}$-force density in Frenet coordinates
P3-4 Magnetoacoustic waves propagating perpendicular to \vec{B}_0
P3-5 Nonlinear, parametric coupling by a shear Alfvén wave pump
P3-6 TEM waves in an electron-ion plasma
P3-7 Plasma density measurements
P3-8 Transparency of alkali metals
P3-9 TEM plasma waves in the presence of collisions
P3-10 Collisional absorption of laser power in a plasma
P3-11 Laser-plasma heating
P3-12 Collisional and collisionless skin depths
P3-13 Small-amplitude one-d dynamics of an electron beam
P3-14 Electron plasma waves (EPW)
P3-15 Ion-acoustic waves (IAW)
P3-16 Fields in EPW and IAW
P3-17 Electron plasma in n-type Silicon semiconductor
P3-18 Electron motion in a cyclotron resonance electric field
P3-19 Cyclotron resonance limited by collisions
P3-20 Helicon wave in the presence of collisions 260
P3-21 Faraday rotation in propagation parallel to \vec{B}_0 260
P3-22 Use of O-mode in plasma density measurements 261
P3-23 Transformation from Cartesian fields to rotating fields 261
P3-24 Frequency at which the X-mode is circularly polarized 261
P3-25 MHD from two-fluid hydrodynamics 262
P3-26 Quasi-neutrality in ES small-amplitude density perturbations 262
P3-27 Solving (3.254) by the method of characteristics 263

Chapter 3. Bibliography 264

4 Collective dynamics in plasmas—III. Collisionless kinetic effects 266
Preamble 266
4.1 Introduction 267
4.2 WPI in unmagnetized, uniform plasmas 267
4.2.1 Nonlinear aspects 269
4.2.2 Linearized WPI—Landau dissipation 271
4.3 WPI in a uniform, magnetized plasma 277
4.3.1 Nonlinear aspects for TEM waves along \vec{B}_0 277
4.3.2 Fields on a particle's zero-order orbits in \vec{B}_0 279
4.3.3 DSCR interaction—linear (Landau-type) dissipation for TEM waves along \vec{B}_0 285
4.3.4 FLR effects and kinetic wave modes 290
4.3.5 Magnetic Landau-type dissipation (MLD) 291
4.4 Problems 294
P4-1 Landau dissipation 294
P4-2 Landau dissipation—an alternate, equivalent derivation 294
P4-3 Weak Landau damping of EPW in a Maxwellian plasma 295
P4-4 Weak Landau damping of IAW in a Maxwellian plasma 295
P4-5 FLR effect on an ES \vec{E}-field across \vec{B} 296
P4-6 Wave fields across \vec{B}_0 as seen by charged particles gyrating in \vec{B}_0 296
P4-7 Collisionless (Landau-type) cyclotron damping and wave power dissipated 297

Chapter 4. Bibliography 298

5 Collisions and collisional transport—I. Particle collisions 299
Preamble 299
5.1 Introduction 300
5.2 Theory of binary, elastic collisions 301
5.2.1 Motion of the center of mass; relative motion 301
5.2.2 Properties of relative motion 303
(a) Momentum and energy conservation 303
(b) Symmetries in elastic, binary collisions 304
(c) The plane of relative motion 305
(d) Impact parameter and deflection angle 306
5.2.3 Relations between the laboratory and the center of mass coordinate systems 309
(a) Deflection and the recoil angles 309
(b) Recoil energy of the target particle 311
5.2.4 Interaction potentials in an ionized gas
(a) Interaction between two charged particles 312
(b) Interactions between an electron and an atom 312
(c) Interactions between two atoms 313

5.2.5 Calculations of deflection angles 313
(a) Coulomb potential 313
(b) Billiard ball type atoms 315
(c) Attractive potentials 315
(d) Short range atomic potentials 316
(e) Long range potentials—small angle scattering 316

5.3 Differential cross-section for elastic collisions 317
5.3.1 Definition of differential cross-section 317
(a) Scattering by a fixed force center 317
(b) Coherent and incoherent scattering 318
(c) Scattering cross-section and probability: single and multiple scattering 319
(d) Elementary mean-free-path, collision time and frequency 320

5.3.2 Cross-section and impact parameter 321
(a) General relations 321
(b) Scattering in a Coulomb interaction potential 321
(c) Billiard ball type molecules 322
(d) Differential cross-sections—center of mass and laboratory frames 322

5.4 Total cross-sections 323
5.4.1 Definitions 323
(a) Total cross-section for elastic scattering 323
(b) Cross-sections for momentum and energy transfer 324

5.4.2 Divergence of σ_1 for Coulomb collisions; the Debye cutoff 325

5.4.3 The Coulomb logarithm—classical and quantum mechanical 326

5.4.4 Effect of magnetic field on the Coulomb logarithm 327

5.4.5 Elastic collisions of electrons and ions with neutrals 328
(a) Polarization scattering 329

5.5 Collisions with neutrals—experimental results 330
5.5.1 Experimental methods 330
(a) Beam injected into gas 331
(b) Colliding, low-energy beams 331
(c) Merging, energetic beams 331
(d) Measurement of transport coefficients 331

5.5.2 Electron-neutral collisions 331

5.6 Inelastic collisions 334
5.6.1 Particles present in an ionized gas—energy levels 334
(a) Energy levels of atoms 334
(b) Molecular energy levels 335
(c) Negative ions 338

5.6.2 Inelastic reactions 340
(a) Energy of reaction 340
(b) Thresholds of reaction
(c) Binary collisions. Laboratory reference system
5.6.3 Principal types of inelastic collisions
5.6.4 Binary, inelastic collisions
(a) Total cross-section for a given reaction. Reaction rate
(b) Collision cross-sections and reaction rates
5.6.5 Ternary inelastic collisions

5.7 Problems
P5-1 Homothetic trajectories
P5-2 Coulomb scattering trajectory and Rutherford cross-sections
P5-3 Collisions with an attractive potential $1/r^4$—polarization scattering
P5-4 Small angle deflections
P5-5 Cross-section for energy transfer
P5-6 The method of merging energetic beams in weakly-ionized plasmas
P5-7 Reaction constant for two Maxwellians
P5-8 Graphical relationship between inelastic and superelastic cross-sections as a function of electron energy

5.8 Appendix
5.8.A Quantum mechanical definition and calculation of cross-sections
(a) Scattering of a de Broglie wave by a fixed center
(b) Partial waves; phase shifts
(c) Remarks
(d) The case of identical particles
(e) Total cross-sections
5.8.B Transport cross-sections and phase shifts
(a) Expansion of $\sigma(\lambda)$ in Legendre polynomials
(b) Calculation of transport cross-sections
5.8.C Spectroscopic notations
(a) Atoms
(b) Diatomic molecules

Chapter 5. Bibliography

6 Collisions and collisional transport—II. Fully-ionized plasmas—Unmagnetized

Preamble

6.1 Relaxation frequencies in elastic Coulomb collisions
6.1.1 Classification of beam relaxations in a Maxwellian plasma
6.1.2 Modified and coupled relaxation rates
(a) Pitch angle scattering in $e-i$ collisions
(b) Collisional relaxation of a current carried by fast electrons

6.2 Transport in fully-ionized plasma
6.2.1 Electrical conductivity and runaway electrons
(a) Electrical conductivity
(b) Runaway electrons
6.2.2 Transport of heat and momentum 384
(a) Transport relaxation times 385
(b) Summary of transport times 387
(c) Transport in the absence of a magnetic field 388

6.3 Problems 390
P6-1 One-d Fokker–Planck equation 390
P6-2 Relation among relaxation rates 391
P6-3 Estimating typical deflection and energy transfer times in a fully-ionized plasma 391
P6-4 Collisional scattering of an electron beam injected into a fully-ionized plasma 392
P6-5 Plasma heating by the injection of energetic ion beams into a fully-ionized plasma 392
P6-6 Self-heating of fusion plasmas 392
P6-7 Fully-ionized plasma relaxation times in Tables 6.1–6.3 393
P6-8 Beam relaxation rates in a Maxwellian plasma 393
P6-9 e-i pitch angle scattering 393
P6-10 Fully-ionized plasma stability of the steady states in drift velocities in an electric field 394
P6-11 Coupled, collisional evolution equations in an electric field 394
P6-12 Perpendicular averaging the high-velocity electron’s collisional friction 395
P6-13 Tokamak plasma current, loop voltage resistivity, and runaway electrons 396

Chapter 6. Bibliography 398

7 Collisions and collisional transport—III. Weakly-ionized plasmas—Unmagnetized 399
Preamble 399

7.1 Introduction 400
7.2 Mobility and free diffusion of electrons 400
7.2.1 Momentum transport equation for electrons 400
7.2.2 Mobility of electrons 401
7.2.3 Free diffusion of electrons 404
7.2.4 The Einstein relation. Temperature of diffusion 404
7.3 Mobility and free diffusion of ions 405
7.4 Free diffusion with boundary conditions. Eigenmodes and diffusion length in a cavity 409
7.4.1 General assumptions and simple model equations 409
7.4.2 Evolution of an afterglow plasma. Eigenmodes and diffusion lengths 412
7.5 Start-up and maintenance of a HF discharge in a cavity 414
7.5.1 Transient regime 414
7.5.2 The steady-state regime 414
7.6 Ambipolar diffusion 417
7.6.1 Comparison of the transport coefficients for electrons and ions 417
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.2</td>
<td>Ambipolar diffusion in a single ion species plasma</td>
<td>417</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Determination of the proportionality coefficient. Domain of validity of the ideal ambipolar diffusion</td>
<td>420</td>
</tr>
<tr>
<td>7.7</td>
<td>Analysis of plasma columns controlled by diffusion</td>
<td>422</td>
</tr>
<tr>
<td>7.7.1</td>
<td>General equations and similarity relations</td>
<td>422</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Explicit results for $\nu_e(w_e) = \text{constant}$</td>
<td>424</td>
</tr>
<tr>
<td>7.8</td>
<td>Plasma columns in the free-fall regime</td>
<td>425</td>
</tr>
<tr>
<td>7.8.1</td>
<td>The low pressure limit of the Schottky regime</td>
<td>425</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Free-fall regime</td>
<td>425</td>
</tr>
<tr>
<td>7.9</td>
<td>Volume recombination and attachment</td>
<td>427</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Comparison between losses by diffusion and volume recombination</td>
<td>428</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Evolution of the density in a recombining plasma</td>
<td>429</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Electron attachment</td>
<td>430</td>
</tr>
<tr>
<td>7.10</td>
<td>Problems</td>
<td>431</td>
</tr>
<tr>
<td>P7-1</td>
<td>Plasma generation by an electron beam</td>
<td>431</td>
</tr>
<tr>
<td>P7-2</td>
<td>Positive column (simple model)</td>
<td>432</td>
</tr>
<tr>
<td>P7-3</td>
<td>Ambipolar diffusion with several species of ions</td>
<td>432</td>
</tr>
<tr>
<td>7.11</td>
<td>Appendix</td>
<td>433</td>
</tr>
<tr>
<td>7.11.A</td>
<td>Normal modes and diffusion lengths for cylindrical and rectangular cavities</td>
<td>433</td>
</tr>
<tr>
<td>(a)</td>
<td>Rectangular cavities</td>
<td>433</td>
</tr>
<tr>
<td>(b)</td>
<td>Cylindrical cavities</td>
<td>434</td>
</tr>
<tr>
<td>Chapter 7. Bibliography</td>
<td></td>
<td>437</td>
</tr>
<tr>
<td>8</td>
<td>Charged-particle motion in electromagnetic fields</td>
<td>438</td>
</tr>
<tr>
<td>Preamble</td>
<td></td>
<td>438</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>440</td>
</tr>
<tr>
<td>8.2</td>
<td>Spatially-uniform and time-invariant \vec{B}-field; $\vec{E} = 0$</td>
<td>441</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Nonrelativistic motion</td>
<td>441</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Relativistic motion</td>
<td>444</td>
</tr>
<tr>
<td>8.3</td>
<td>Spatially-uniform and time-invariant \vec{E}-field; $\vec{B} = 0$</td>
<td>446</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Nonrelativistic motion</td>
<td>446</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Relativistic motion</td>
<td>447</td>
</tr>
<tr>
<td>8.4</td>
<td>Magnetic, electric, gravity and gravity-like fields</td>
<td>447</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Uniform and constant \vec{E} and \vec{B}-fields</td>
<td>448</td>
</tr>
<tr>
<td>(a)</td>
<td>Nonrelativistic guiding center drift in $\vec{E} \perp \vec{B}$</td>
<td>449</td>
</tr>
<tr>
<td>(b)</td>
<td>Relativistic guiding center drift in $\vec{E} \perp \vec{B}$ and \vec{B}-fields</td>
<td>453</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Guiding center drift in gravity-type force $\vec{E} \perp \vec{B}$</td>
<td>454</td>
</tr>
<tr>
<td>8.5</td>
<td>Slowly-varying spatially-nonuniform \vec{B}-fields; $\vec{E} = 0$</td>
<td>456</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Variations along \vec{B}</td>
<td>457</td>
</tr>
<tr>
<td>(a)</td>
<td>Axial force (see also Chapter 1, Section 1.7.2)</td>
<td>457</td>
</tr>
<tr>
<td>(b)</td>
<td>Conservation of energy and μ_M constancy</td>
<td>458</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Slow variations in \vec{B}-field perpendicular to \vec{B}</td>
<td>460</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Curvature of \vec{B} and total guiding center drift</td>
<td>462</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Exact trajectories in the Earth's dipole field</td>
<td>465</td>
</tr>
</tbody>
</table>
8.5.5 Guiding-center drifts from the local $\nabla \vec{B}$-dyad representation
(a) Parallel gradient of \vec{B}; local divergence or convergence of \vec{B}
(b) Perpendicular gradient of \vec{B}
(c) Curvature of \vec{B}
(d) Shear in \vec{B}

8.6 Slowly-varying, time-dependent \vec{E} and \vec{B}-fields
8.6.1 Polarization drift—a more detailed derivation

8.7 The adiabatic motion of charged particles
8.7.1 Guiding center motion in the adiabatic approximation
8.7.2 Summary of guiding center equations for $v_E \sim \mathcal{O}(\varepsilon)$ and initial conditions for them
8.7.3 Guiding-center orbits in the Earth’s dipole \vec{B}-field
8.7.4 Kruskal’s asymptotic formulation
8.7.5 Hamiltonian formulations

8.8 Constants of motion and confinements in time-invariant \vec{B}-fields
8.8.1 Motion in axially-symmetric magnetic fields
8.8.2 Guiding center motions in \vec{B}-fields for MCF plasmas
(a) Particle motion and confinement in a simple mirror \vec{B}-field
(b) Particle confinement in rotational transform of closed \vec{B}-field lines

8.9 Adiabatic invariants
8.9.1 Magnetic moment invariant
8.9.2 Longitudinal (or “second”) adiabatic invariant
8.9.3 Flux (or “third”) adiabatic invariant

8.10 Motion in HF EM fields—Pondermotive effects
8.10.1 Single particle in an unmagnetized ($\vec{B}_0 = 0$) motion
8.10.2 Single particle in a magnetized ($\vec{B}_0 \neq 0$) motion

8.11 Problems
P8-1 Free charged particles in a constant \vec{B}_0; collisions; collective modes
P8-2 Charged-particle motion in constant \vec{B}_0—coordinate-independent description
P8-3 Relativistic magnetic moment and its adiabatic invariance
P8-4 Motion in constant \vec{E}-field and $\vec{B} = 0$
P8-5 Guiding center drift in constant fields $\vec{E} \perp \vec{B}$
P8-6 Guiding center drift in $\nabla \perp \vec{B}$
P8-7 Radius of a curvature and magnetic field line geometry
P8-8 Motion in slowly time-varying $\vec{E} \perp \vec{B}$ fields; $\vec{B} = $ constant
P8-9 Derivation of guiding-center equations to order ε
P8-10 Guiding center drift-velocity perpendicular to $\vec{B}(\vec{R})$ for $v_E \sim \mathcal{O}(\varepsilon)$
P8-11 Equation for guiding center velocity parallel to $\vec{B}(\vec{R}), \vec{V} \parallel$
P8-12 Energy integral in guiding center equations
P8-13 Liouville relation in guiding center equations
P8-14 Initial conditions for $\vec{V} \parallel \equiv \vec{R} \cdot \dot{\vec{b}}(\vec{R})$
9 Magnetohydrodynamics 534
Preamble 534
9.1 Introduction 535
9.2 MHD from guiding-center particle dynamics 535
9.2.1 Two-d collisionless MHD across a no-curvature magnetic field 536
(a) Equilibrium equations 539
(b) Slowly varying fields 539
(c) Dynamic ideal-MHD equations 541
(d) Constants of motion; adiabatic compression heating 542
(e) Conservative form of equations and conservation of energy 544
(f) Linear MHD stability analysis 545
9.2.2 Rayleigh–Taylor and Kruskal–Schwarzschild instabilities 560
(a) RTI in ICF plasmas 563
(b) Effects of \vec{B}_0 on RTI/KSI 569
(c) Compressibility effect on the RTI 571
(d) The Kelvin–Helmholtz instability (KHI) 572
9.2.3 The θ-pinch plasma—cylindrical and for MCF 575
9.2.4 Three-d collisionless MHD-Chew, Goldberger and Low (CGL) theory 578
(a) Fluid current density from guiding-center particle dynamics in 3-d 581
(b) Confined MHD equilibria in anisotropic pressure plasmas 582
9.2.5 Double-adiabatic CGL dynamics in uniform anisotropic plasmas 585
(a) Alfvén wave perturbations along \vec{B}_0 and the “firehose” instability 586
(b) Wave perturbations at an angle to \vec{B}_0 and the “mirror instability” 589
9.2.6 Interchange instabilities including \vec{B}-field curvature 596
(a) Effective gravity in curved \vec{B}-field lines 596
(b) Instability in a simple magnetic mirror; minimum-\vec{B} stability 598
9.2.7 The Z-pinch 602
(a) Equilibrium 602
(b) Linear stability/instability 605
9.3 Single-fluid MHD 610
9.3.1 Basic model equations 610
9.3.2 Local conservation equations 612
(a) Energy 613
(b) Momentum 614
9.3.3 Resistive vs. ideal MHD 615
(a) Mass diffusion perpendicular to \vec{B}_0—see Chapter 2, Section 2.3.3 (c) 615
(b) Magnetic field diffusion 616
9.3.4 Ideal MHD
(a) Plasma localized on \vec{B}-field lines
(b) Magnetic flux conservation
(c) Conservation of energy momentum and angular momentum
(d) Magnetic helicity

9.3.5 Small-amplitude dynamics—uniform plasmas
(a) Linearization of model equations
(b) Small-amplitude dynamic equations and natural waves
(c) Small-amplitude energy conservation—stability of natural waves
(d) Complex Poynting equation in ideal MHD—resonances
(e) Group velocity and energy velocity of stable waves
(f) Dispersion relations of the natural waves
(g) Small-amplitude displacement field polarizations
(h) Weak damping of linear MHD waves

9.4 Resistive MHD instabilities

9.5 Problems

P9-1 The mass-momentum equation (9.25)
P9-2 Conservative equations and conservation of energy
P9-3 Review of F-L tx. and space-time Green’s functions
P9-4 The RTI/KSI in sheared-magnetic field
P9-5 Cylindrical Z-pinch equilibria
P9-6 Constructing conservation equations of the MHD model
P9-7 Reynolds numbers for some plasmas
P9-8 F-L tx. of linearized ideal MHD equations
P9-9 Proving $\vec{v}_{gr} = \vec{v}_{en}$ in ideal MHD
P9-10 Spatial damping of MHD waves
P9-11 Viscous to resistive damping in an Alfvén wave
P9-12 Damping of magnetoacoustic waves

Chapter 9. Bibliography

10 Drift-free cold plasma, unmagnetized—Linear and nonlinear electrodynamics

Preamble

10.1 Introduction

10.2 Unmagnetized and drift-free, cold plasma
10.2.1 The cold-plasma model equations
(a) Energy, energy flow and power dissipated
(b) Linear and nonlinear hydrodynamics

10.3 Amplitude limits for laminar ES dynamics—wavebreaking
10.3.1 Traveling waves—relativistic
(a) One-d, ES-field dynamics
(b) Pure transverse field dynamics

10.4 Linearized dynamics
10.4.1 Neutral, drift-free, and field-free equilibrium
10.4.2 Small-amplitude perturbations
10.4.3 Linear response functions for given electric fields 685
(a) Transverse field response 685
(b) Longitudinal field response 686
10.4.4 Maxwell’s equations for SCF 687
(a) TEM modes 687
(b) TEM wave reflection and transmission 690
(c) Fields driven from an external antenna 692
(d) LES modes 695
(e) Validity of cold plasma linear wave descriptions 696
10.4.5 Eigenvalue analysis of natural modes 696
10.4.6 Small-amplitude energy conservation 698
(a) Linear stability 699
(b) Uniqueness of linear solutions 700
(c) Time-average energies and complex Poynting equations 701
(d) Orthogonality 703
(e) Field variation equation 704
(f) Linear electrodynamic formulation 705
10.5 Nonlinear coupling of cold plasma waves 709
10.5.1 Resonant Raman 3WI 711
10.5.2 Slowly-varying amplitudes in weak coupling 713
10.5.3 Parametric interactions 714
10.5.4 Physical picture of the parametric instability 716

10.6 Problems 718
P10-1 Relativistic momentum conservation equation in a fluid description of charged particles 718
P10-2 The relativistic, nonlinear conservation of energy equation 719
P10-3 Spatial harmonics in E-field near wavebreaking 719
P10-4 Relativistic traveling waves 720
P10-5 Accounting for elastic collisions in linear response functions 720
P10-6 Kramers–Krönig relations for an unmagnetized, cold, and drift-free plasma with collisions 721
P10-7 Green’s function for TEM fields in a cold plasma 721
P10-8 Plasma fluid velocities induced by high-intensity lasers 722
P10-9 TEM wave reflection and transmission at a plasma-free space boundary 724
P10-10 Plasma slab with a current sheet antenna driven at $\omega_r < \omega_p$ 724
P10-11 Current sheet source in free space 726
P10-12 Current sheet source adjacent to plasma 728
P10-13 Green’s function for LES fields in a cold plasma 728
P10-14 Interpretation of small-amplitude energy density, energy flow density, and power density dissipated 728
P10-15 Uniqueness of linearized field solutions 729
P10-16 Orthogonality in small-amplitude energy 729
11 Drift-free cold plasma, magnetized—I. Linearized electrodynamics

P11-1 Linear, ES dynamics perpendicular to \vec{B}_0 760
P11-2 Susceptibility tensor for a cold plasma with momentum loss due to elastic collisions 760
P11-3 Singularities in the collisionless susceptibilities 760
P11-4 Hermitian and anti-Hermitian susceptibility tensors 761
P11-5 Properties of susceptibility tensor elements from reality of fields 761
P11-6 Kramers–Krönig relations from causality of internal response 761
P11-7 Kramers–Krönig relations from analyticity of $\omega \chi_{ij}(\omega)$ for $\omega_i > 0$ 762
P11-8 Cold plasma susceptibility tensor satisfying Kramers–Krönig relations 762
P11-9 Kramers–Krönig relations from conjugate potential functions of $\omega \chi_{ij}(\omega)$ 762
P11-10 Power dissipated in an electron-ion plasma in a constant magnetic field \vec{B}_0 763
P11-11 Relation of small-amplitude conservation of energy to the nonlinear conservation of energy 763
P11-12 Small-amplitude complex variation relation 764
P11-13 Average power density dissipated at small amplitudes 764
P11-14 Average power density dissipated at cyclotron resonance 764
11.4 Appendix: Time dispersive media

11.4.A Properties of the susceptibility tensor for an inhomogeneous, temporally dispersive medium
(a) Reality of fields
(b) Kramers–Krönig relations
(c) Onsager relations

Chapter 11. Bibliography

12 Drift-free cold plasma, magnetized—I. Linear modes; principal waves
Preamble

12.1 Natural and driven modes in a homogeneous plasma
12.1.1 Dispersion relation and field polarizations of natural modes
(a) Fields and their dispersion tensor
(b) Dispersion relations $\vec{k}(\omega_r)$ modes
(c) Polarization of natural modes
(d) Energy and energy flow characteristics of waves
(e) Natural modes in $\omega(\vec{k}_r)$

12.2 Principal waves in an electron-ion plasma
12.2.1 Waves propagating parallel to \vec{B}_0
(a) The shear (or torsional) Alfven wave
(b) EMIC and whistler waves
(c) Fast EM waves and Faraday rotation at HF

12.2.2 Waves propagating perpendicularly to \vec{B}_0
(a) The compressional Alfven wave
(b) LH and UH resonances in propagation
(c) The Buchsbaum ion-ion hybrid resonances
(d) High-frequency, fast EM waves

12.3 Problems
P12-1 Dispersion tensor in rotating coordinates
P12-2 The dispersion tensor for transverse and longitudinal fields
P12-3 Small-amplitude energy flow conservation perpendicular to \vec{B}_0
P12-4 Electric field polarizations in spherical coordinates
P12-5 Natural modes for time evolution of propagating fields
P12-6 Collisional damping of Alfven waves
P12-7 Ionic whistler waves
P12-8 UH and LH resonances in propagation
P12-9 Time average balance of energies in UH and LH resonance
P12-10 FLR effects in UH resonance
P12-11 The Buchsbaum IIHR

Chapter 12. Bibliography

13 Drift-free cold plasma, magnetized—III. Waves in arbitrary directions; nonlinear coupling
Preamble

13.1 Waves propagating in arbitrary directions relative to \vec{B}_0
13.2 The CMA diagram
13.2.1 Phase velocity surfaces in the (α^2, β^2) plane
13.2.2 Normal mode analysis
13.2.3 Dispersion relation plots
 (a) Propagation cutoff frequencies
 (b) Propagation resonance frequencies
 (c) Propagation dispersion for arbitrary θ
13.3 Alternate wave-surface representations
13.4 Accessibility to a LH slow wave in a plasma
 13.4.1 Detailed analysis of accessibility in the LHFR
 (a) Detailed analysis of accessibility in the LHFR
13.5 Asymptotic fields from field excitations
 13.5.1 Initial fields of limited extent
 (a) One-d space; no caustics
 (b) Caustics
 (c) Three-d; no caustics
 (d) Two- and three-d; caustics
 13.5.2 Space-localized source at steady-state frequency
 (a) Two-d space; no caustics
 (b) Three-d space; no caustics
 (c) Two-d space and caustic
 (d) Three-d space and caustic
13.6 The Appelton–Hartree dispersion relation
 13.6.1 The QC approximation in a neutral electron plasma
 13.6.2 The QP approximation in a neutral electron plasma
13.7 QC and QP approximations in an electron-ion plasma
 13.7.1 QC and QP waves
 13.7.2 The QP approximation
 13.7.3 Polarizations in the QC and QP approximations
13.8 Longitudinal and transverse modes
13.9 The QES approximation
 13.9.1 QES modes
 (a) HF UH and Trivelpiece–Gould modes
 (b) Lower-hybrid waves (LHW)
 (c) EM corrections to ES LHWs
 (d) Cold plasma ES ion cyclotron (CP-ESIC) waves
 13.9.2 Excitation and propagation of ES modes—resonance cones
13.10 Slow and fast wave approximations
13.11 EHD of helicons at an angle to \vec{B}_0 and their M-LD
13.12 The LF-MHD regime and M-Landau damping
13.13 Nonlinear coupling of waves
13.14 Problems
 P13-1 Phase velocity dispersion relation
 P13-2 Normal mode matrix for waves in a drift-free cold plasma in \vec{B}_0
 P13-3 Propagation cutoff frequencies
 P13-4 Propagation resonance frequencies
 P13-5 The Appelton–Hartree dispersion relation and field polarizations
 P13-6 Energy flow in whistlers at an angle to \vec{B}_0
14 Dynamics with thermal pressures—I. Unmagnetized plasma

14.1 Introduction

14.2 The model equations in unmagnetized \((\vec{B}_0 = 0)\) plasmas with isotropic thermal pressure

14.3 Wavebreaking in the hydrodynamic model

14.4 Linearized dynamics

(14.4.1) Linear response functions for given electric fields

(a) Transverse field response

(b) Longitudinal field response

14.4.2 Maxwell's equations for the selfconsistent fields

(a) TEM modes

(b) LES modes

14.4.3 Energy, energy flow, and power dissipated

(a) Conservation of energy

(b) Small-amplitude energy conservation

(c) Small-amplitude complex Poynting equation, orthogonality and variation relations

(d) Linear electrodynamic formulations

14.5 Nonlinear coupling of waves

14.5.1 SRBS in a thermal plasma

14.6 Problems

P14-1 Longitudinal susceptibility in the presence of elastic collisions

P14-2 Pulse propagation in a plasma with isotropic, thermal pressures

P14-3 Uniqueness of linearized field solutions

P14-4 Interpretation of small-amplitude energy density

P14-5 Complex Poynting, orthogonality, and variation relations for a drift-free, unmagnetized \((\vec{B}_0 = 0)\) plasma with isotropic thermal pressures

P14-6 Comparing electrodynamic and hydrodynamic expressions for densities of average energy, energy flow, and power dissipated
15 Dynamics with thermal pressures—II. Magnetized plasma

Preamble

15.1 Magnetized \((\vec{B}_0 \neq 0) \) drift-free plasma with thermal pressures

15.2 Drift-free plasma in \(\vec{B}_0 \)—isotropic thermal pressures

15.2.1 The linear conductivity and susceptibility

15.2.2 The dispersion tensor for the selfconsistent fields of the natural modes

15.2.3 Small-amplitude conservation relations

15.2.4 Natural modes

(a) Principal waves along \(\vec{k} \parallel \vec{B}_0, \theta = 0; \xi = 0, \zeta = 1 \)

(b) Principal waves across \(\vec{k} \perp \vec{B}_0, \theta = \pi/2; \xi = 1, \zeta = 0 \)

(c) ES waves at an angle to \(\vec{B}_0 \)—modifying cold plasma slow waves

(d) Normal mode analysis

(e) Phase velocity surfaces from normal modes

(f) Dispersion relation plots for arbitrary \(\theta \)

15.3 Drift-free plasma in \(\vec{B}_0 \)—with anisotropic thermal pressures

15.3.1 Linearized hydrodynamics for anisotropic thermal pressures

(a) Homogeneous equilibrium

(b) Linearized hydrodynamic equations

15.3.2 Linear susceptibility tensor in perturbations of TE

(a) Unmagnetized \((\vec{B}_0 = 0) \) plasma

(b) Magnetized \((\vec{B}_0 \neq 0) \) plasma

15.3.3 Dispersion relations in \(\vec{B}_0 \neq 0 \)

(a) Emphasizing \((n, \xi, \zeta) \) dependencies

(b) Emphasizing \((n_-,n_0) \) dependencies

15.4 Connecting cold plasma to kinetic dispersion relations at HF

15.4.1 Transformation of the cold-plasma SX-mode to a kinetic EBW mode

15.4.2 Thermal modifications of the Bohm–Gross and Trivelpiece–Gould modes

15.4.3 Thermal modifications of LH modes

15.4.4 The ES-ICW regime

15.5 Problems

P15-1 Susceptibility tensor for the drift-free plasma with isotropic thermal pressures in a magnetic field

P15-2 Limiting forms of the susceptibility tensor

P15-3 Isotropic thermal pressure susceptibility to first-order in \((k_\parallel v_{Ts}/\omega)^2 \) and \((k_\perp p_{Ts})^2 \)

P15-4 The susceptibility tensor in rotating and transverse-longitudinal field coordinates

P15-5 Normal mode wave matrix for a drift-free plasma in \(\vec{B}_0 \) with isotropic thermal pressures.

P15-6 HF X-mode as modified by isotropic thermal electron pressure

P15-7 The QES dispersion relation when isotropic thermal pressure effects are included
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P15-8 Equation for the thermal pressure tensor</td>
<td>1009</td>
</tr>
<tr>
<td>P15-9 Susceptibility tensor for anisotropic thermal pressure</td>
<td>1010</td>
</tr>
<tr>
<td>perturbations</td>
<td></td>
</tr>
<tr>
<td>P15-10 Dispersion relation with first-order effects due to anisotropic</td>
<td>1010</td>
</tr>
<tr>
<td>thermal pressure perturbations</td>
<td></td>
</tr>
<tr>
<td>P15-11 Thermal dispersion relation exhibiting $(n_{\perp},n_{\parallel})$</td>
<td>1010</td>
</tr>
<tr>
<td>dependencies</td>
<td></td>
</tr>
<tr>
<td>P15-12 Modifications in the cold-electron plasma UH propagation</td>
<td>1011</td>
</tr>
<tr>
<td>resonance due to thermal modes</td>
<td></td>
</tr>
<tr>
<td>P15-13 ES dispersion relation with thermal corrections for HF modes</td>
<td>1012</td>
</tr>
<tr>
<td>P15-14 Validity of hydrodynamic FLR description for LH modes</td>
<td>1012</td>
</tr>
<tr>
<td>P15-15 LH dispersion relation with EM and FLR corrections</td>
<td>1013</td>
</tr>
<tr>
<td>15.6 Appendix: Time and space dispersive media</td>
<td></td>
</tr>
<tr>
<td>15.6.A Properties of the susceptibility tensor in a spatially and</td>
<td></td>
</tr>
<tr>
<td>temporally dispersive medium</td>
<td></td>
</tr>
<tr>
<td>(a) Hermitian and anti-Hermitian tensors</td>
<td>1014</td>
</tr>
<tr>
<td>(b) Properties associated with the reality of fields</td>
<td>1015</td>
</tr>
<tr>
<td>(c) Onsager relations</td>
<td>1015</td>
</tr>
<tr>
<td>(d) Kramers–Kronig relations</td>
<td>1017</td>
</tr>
<tr>
<td>Chapter 15. Bibliography</td>
<td></td>
</tr>
<tr>
<td>16 E-beam waves, instabilities and devices</td>
<td>1020</td>
</tr>
<tr>
<td>Preamble</td>
<td>1020</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>1022</td>
</tr>
<tr>
<td>16.2 One-d dynamics of an electron stream</td>
<td>1023</td>
</tr>
<tr>
<td>16.2.1 General, nonlinear equations</td>
<td>1023</td>
</tr>
<tr>
<td>16.2.2 Linearized equations for small amplitude fields</td>
<td>1024</td>
</tr>
<tr>
<td>16.3 Energy and energy flow associated with the waves</td>
<td>1027</td>
</tr>
<tr>
<td>16.3.1 Energy in fast and slow wave excitation</td>
<td>1028</td>
</tr>
<tr>
<td>16.3.2 Small-amplitude energy density</td>
<td>1028</td>
</tr>
<tr>
<td>16.3.3 Small-amplitude energy conservation equation</td>
<td>1030</td>
</tr>
<tr>
<td>16.4 Stable and unstable excitations of e-beam waves</td>
<td>1033</td>
</tr>
<tr>
<td>16.5 Instability in the interaction with a dissipative medium</td>
<td>1038</td>
</tr>
<tr>
<td>16.5.1 Dispersion relation for the beam-resistive medium system</td>
<td>1038</td>
</tr>
<tr>
<td>16.5.2 Approximate solution of the dispersion relation for weak</td>
<td>1040</td>
</tr>
<tr>
<td>dissipation</td>
<td></td>
</tr>
<tr>
<td>16.5.3 Energy conservation in the presence of small dissipation</td>
<td>1043</td>
</tr>
<tr>
<td>16.5.4 Energy flow in resistive medium amplification</td>
<td>1044</td>
</tr>
<tr>
<td>16.6 Beam interaction with a non-dissipative (reactive) medium</td>
<td>1045</td>
</tr>
<tr>
<td>16.7 Problems</td>
<td>1048</td>
</tr>
<tr>
<td>P16-1 Longitudinal response function</td>
<td>1048</td>
</tr>
<tr>
<td>P16-2 Series expansion of kinetic energy</td>
<td>1049</td>
</tr>
<tr>
<td>P16-3 Small-amplitude, kinetic energy flow density in one-d dynamics</td>
<td>1050</td>
</tr>
<tr>
<td>of an electron stream</td>
<td></td>
</tr>
<tr>
<td>P16-4 Small-amplitude dynamics and conservation of energy for an</td>
<td>1050</td>
</tr>
<tr>
<td>inhomogeneous cold electron stream</td>
<td></td>
</tr>
<tr>
<td>P16-5 Boundary conditions for dipole grids in an electron beam</td>
<td>1051</td>
</tr>
</tbody>
</table>
17 Streaming instabilities in cold plasmas

17.1 Streaming instabilities in plasmas

17.2 The electron beam-plasma instability

17.2.1 Derivation of the dispersion relation

17.2.2 Solutions for complex $\omega(k_r)$

17.2.3 Solutions for complex $k(\omega_r)$

(a) The plasma as a reactive medium

(b) Spatial amplification at real frequencies

17.2.4 Nonlinear aspects of the instability

17.3 Instabilities driven by currents in a plasma

17.3.1 The Pierce–Budker–Buneman instability

17.3.2 Nonlinear aspects

17.4 ES two-stream instabilities

17.4.1 Counterstreaming electrons

17.4.2 Costreaming electrons with different velocities

17.4.3 Counterstreaming electrons through ions

17.4.4 Nonlinear aspects

17.5 EM instabilities

17.5.1 The cold plasma, fully EM and relativistic dynamics

17.5.2 Linearized, nonrelativistic dynamics

17.5.3 The Weibel-type instability—Nonrelativistic

(a) The feedback mechanism for the instability

(b) Small-amplitude energy conservation for the Weibel instability

(c) Nonlinear aspects of the Weibel instability

17.5.4 Relativistic dynamics and small-amplitude energy conservation

(a) Linearized dynamics and small-amplitude energy

(b) The Weibel instability—Relativistic analysis

(c) Waves propagating across an electron beam
17.6 Relativistic beam along \vec{B}_0

17.6.1 Negative energy waves and beam-plasma interactions
(a) Beam modes for $\vec{B}_0 = 0$ and $k_z = 0$
(b) Negative energy EM modes in a beam along \vec{B}_0
(c) Relativistic beam-plasma in $\vec{B}_0 = 0$—coupling to EM waves
(d) Counterstreaming Weibel-type EM instability across $\vec{B}_0||\vec{v}_0$

17.7 Charged-particle streams across \vec{B}_0

17.7.1 LF gravitational ES instability—constant density along \vec{g}
17.7.2 Density gradient along \vec{g} in gravitational ES instability

17.8 Problems
P17-1 Unstable wavenumber range for instability in the e-beam-plasma interaction
P17-2 Beam-plasma instability in a plasma density gradient along the beam flow direction
P17-3 Range of wavenumbers for the Pierce–Budker–Buneman instability
P17-4 Maximum growth rate for the Pierce–Budker–Buneman instability
P17-5 Spatial growth rate in costreaming electron beams of equal densities and unequal drift velocities
P17-6 Nonzero frequency, unstable ES mode in counterstreaming electrons through ions
P17-7 Relativistic description of one-d ES dynamics
P17-8 The relativistic conservation of energy equation for a cold plasma
P17-9 TEM fields with $\vec{E}_1 \perp \vec{v}_0$ in counterstreaming beams
P17-10 Small-amplitude conservation of energy for the nonrelativistic Weibel instability
P17-11 Linearization of the relativistic momentum and kinetic energy
P17-12 Small-amplitude, average energy densities in the relativistic counterstreaming system of the Weibel instability
P17-13 Waves propagating across the drift direction of a single electron beam
P17-14 Nonrelativistic analysis of waves propagating across an electron beam
P17-15 Waves across an electron beam by coordinate transformation
P17-16 Small-amplitude, average energy density in waves across an electron beam
P17-17 Susceptibility tensor for relativistic cold beam drifting along \vec{B}_0
P17-18 O-mode instability analysis for counterstreaming beams along \vec{B}_0

Chapter 17. Bibliography

18 Space-time evolution of linear instabilities—Absolute and convective

Preamble

18.1 Introduction
18.2 A simple example of linear instability evolution
18.3 General analysis of instability evolutions
Table of contents

18.3.1 Time-asymptotic evolutions in one-d space and time 1145
18.3.2 Absolute instabilities—Unstable normal modes 1147
 (a) Examples of absolute instabilities—Simple pinch points at finite k 1153
 (b) End-point and pinch-point singularities with $k \to \infty$—Essential singularities in $I(z, \omega)$ 1157
 (c) Absolute instability in more complex systems 1161
18.3.3 Convective instabilities—spatial amplification 1165
 (a) Examples of convective instabilities 1169
18.3.4 Propagating waves in an unstable medium 1171
18.4 Asymptotic pulse shapes of unstable evolutions 1173
18.4.1 Nonrelativistic pulse evolutions 1173
18.4.2 Relativistic pulse evolutions 1177
18.4.3 Pulse edge evolutions 1179
18.4.4 Examples of unstable, time-asymptotic pulse shapes 1179
18.5 Problems 1184
 P18-1 Green’s function for the p.d.e. (18.1) 1184
 P18-2 Branch-cut integrals in (18.27) 1184
 P18-3 Residues in simple and double poles 1185
 P18-4 Taylor series of D near (k_0, ω_0) 1186
 P18-5 Merging on two k_u or two k_ℓ roots of $k(\omega_L)$ 1186
 P18-6 Absolute instability in counter-streaming electron beams 1187
 P18-7 Absolute instability in the coupled-mode/tachyon dispersion relation 1187
 P18-8 A BWO-type dispersion relation gives absolute instability 1188
 P18-9 Mappings in the stability/instability analysis for (18.90) 1189
 P18-10 Green’s function for the cold e-beam plasma instability 1190
 P18-11 Simple dispersion relations with essential singularity in its associated Green’s function inverse transform 1193
 P18-12 Convective instability in the system with dispersion relation (18.90) 1194
 P18-13 Stability analysis for costreaming electron beams 1194
 P18-14 Green’s function for the convective instability in coupling of waves 1195
 P18-15 Pure waves in the convectively unstable coupling of modes 1195
 P18-16 Pinch-point differential equations in one-d 1195
 P18-17 Pulse-edge characteristic for the EM-Weibel, counterstreaming instability 1196
 P18-18 Asymptotic pulse shapes for unstable, coupled-mode interactions (18.87) and (18.125) 1197
 P18-19 Asymptotic pulse shape for the cold beam-plasma instability 1197
 P18-20 Asymptotic pulse shape for the unstable system in P18-11 1198

Chapter 18. Bibliography 1199