Nonlinear Waves in Bounded Media
The Mathematics of Resonance

Michael P Mortell
University College Cork, Ireland

Brian R Seymour
University of British Columbia, Canada
Contents

Preface vii

1. Introduction 1

2. Physical Examples: Basic Equations 7
 2.1 Longitudinal Vibrations of an Elastic Panel . . 7
 2.1.1 Inhomogeneous Panel 8
 2.1.2 Viscoelastic Panel 9
 2.2 One-dimensional Motion of an Inviscid Gas
 in a Tube 10
 2.2.1 Tube with Variable Cross Section 11
 2.2.2 Elastic Gas 12
 2.3 Shallow Water Waves — Hydraulic Flow 12
 2.3.1 Variable Bottom Topography 13
 2.4 Characteristics 14

3. Classical Linear Solutions 16
 3.1 General Solution 16
 3.2 D’Alembert’s Solution 18
 3.2.1 Solution on the Semi-infinite Line . . . 19
 3.2.2 Solution in a Finite Domain 21
 3.3 Free Vibrations of An Elastic Panel 23
 3.4 Reflection of a Plane Stress Wave from a Boundary 25
4. Linear Physical Examples .. 29
 4.1 Dimensionless Variables 29
 4.2 Periodic Forcing of a Gas in a Closed Tube 32
 4.2.1 Damping through Radiation 34
 4.3 Spherical and Cylindrical Waves in a Gas 37
 4.3.1 Spherical Waves 37
 4.3.2 The Dirac Delta Function 40
 4.3.2.1 The delta function and the Green's function 42
 4.3.2.2 The delta function in polar coordinates 43
 4.3.3 Cylindrical Wave — Symmetry About a Line 43
 4.3.4 Spherical Means 48
 4.3.5 Method of Descent 50
 4.3.6 Forced Vibrations by a Body Force 53

5. Linear Waves in Stratified Media 56
 5.1 Webster Horn Equation 57
 5.2 Expansion Methods ... 59
 5.2.1 Multiple Scale Expansion 61
 5.2.2 WKB Expansion .. 62
 5.3 Geometric Acoustics from Laminates 64
 5.4 Linear Geometric Acoustics Expansion 67
 5.5 Physical Examples ... 69
 5.5.1 Inhomogeneous Elastic Panel 69
 5.5.2 Maxwell Solid .. 72
 5.5.3 Pulsating Sphere of Large Radius 73
 5.5.4 Pulsating Cylinder of Large Radius 75
 5.5.5 Sound Waves in a Tube with Variable Cross Section 76
 5.6 Exact Solutions .. 77
 5.6.1 Simple Examples 77
 5.6.2 General Result and Proof 80
 5.6.3 Simple Shaped Horns 86
 5.6.3.1 $C(y) = e^{ky}$ 86
5.6.3.2 $C(y) = (1 + ay)^2$ 87
5.6.3.3 $C(y) = (1 + ay)^{-2}$ 89
5.6.3.4 $C(y) = (1 + ay)^4$ 89
5.6.3.5 $C(y) = (1 + ay)^{-4}$ 91

5.6.4 General Solution with Cross Section:
$s(x) = (1 + ax/D)^{±2}$ 91

5.6.5 Comparison of Exact and Approximate Solutions 93

5.7 Connection to solitons and the KdV equation 97

6. Kinematic and Simple Waves 108
6.1 Kinematic Waves, Shocks, Equal Area Rule . . . 109
6.1.1 Damped and Amplified Waves 116
6.2 Simple Waves: Riemann Invariants 118

7. Nonlinear Geometric Acoustics 124
7.1 Whitham’s Nonlinearization Technique 125
7.1.1 Steady Supersonic Projectile 126
7.1.2 High Frequency Waves in a Maxwell Solid 127
7.1.3 Spherical Wave for Large Radius 128
7.1.4 Cylindrical Wave for Large Radius 128
7.2 Regular Expansion 129
7.2.1 Elastic Panel 129
7.2.2 Maxwell Solid 134
7.2.3 Shallow Water Waves Over Variable Bottom 136
7.2.4 Pulsating Sphere of Large Radius 140
7.2.5 Pulsating Cylinder of Large Radius 142
7.2.6 Flow with Cross Section:
$s(x) = (1 + ax/D)^{-2}$ 143

7.3 Multiple Scale Expansion: Elastic Panel 145
7.3.1 Nonlinear Characteristic from Laminates 148
7.4 Large Amplitude Modulated Simple Waves 150
7.4.1 Inhomogeneous Elastic Panel 150
7.4.2 Surface Gravity Waves 154
8. Bounded Media 160
8.1 Noninteracting Simple Waves 160
8.1.1 Fixed and Stress-free Boundaries 163
8.1.2 Radiation Boundary Condition 166
8.1.3 Periodicity and Shocks 170
8.1.4 A Self-sustained Oscillation 171
8.1.5 Standing Wave with Cross Section: $s(x) = (1 + ax)^{-2}$ 175
8.1.6 Standing Wave in an Inhomogeneous Elastic Panel 179
8.1.7 Standing Wave in a Maxwell Solid 180
8.2 Multiple Scale Examples 182
8.2.1 Homogeneous Elastic Panel 183
8.2.2 Finite Length Maxwell Solid 189
8.2.3 Sloshing in a Shallow Tank 192
8.2.4 Alternative Derivation for a Nonlinear Standing Surface Wave in a Shallow Tank 197
8.2.5 Nonlinear Hydraulic or Long Wave Sloshing in a Tank 198
8.2.6 The Boussinesq Equations 201
8.2.7 A Generalized KdV Equation: An Anharmonic Lattice or a Nonlinear Dispersive String 202

9. Nonlinear Resonance: Shocked Solutions 206
9.1 Chester's Procedure 208
9.2 A Perturbation Approach 213
9.3 Nonlinearization of a Difference Equation 215
9.4 The Resonant Band 217
9.4.1 Damped Oscillation 221
9.4.2 A Bouncing Ball Problem and Chaos 226
9.4.3 Resonance with Cross Section $s(x) = (1 + ax)^{-2}$ 228
9.5 Small Rate Subharmonic Oscillations 229
9.5.1 Nonlinearization 233
Contents

10. **Finite Rate Oscillations** 234
 10.1 Continuous Solutions 236
 10.2 Functional Equation: Discontinuous Solutions 242
 10.2.1 Mapping Details 243
 10.2.2 Construction of Periodic Solutions 250
 10.2.3 Discontinuous Invariant Curves 251
 10.2.4 Solution in the Linear Resonance Region 256
 10.3 Finite Rate Subharmonic Oscillations 257
 10.3.1 Invariant Curves 259
 10.4 Exact Discontinuous Solutions of An Area-Preserving Mapping 266
 10.4.1 Construction of Invariant Curve $F_0^+(y)$, $0 \leq y \leq 1$ 267

11. **The Evolution of Resonant Oscillations** 276
 11.1 Small Rate Evolution 277
 11.1.1 A Perturbation Approach 277
 11.1.2 Nonlinearization 281
 11.1.3 Damped Resonance using Nonlinearization 284
 11.1.4 Evolution Near Half the Fundamental Frequency 286
 11.2 Large Rate Evolution 289

12. **Shaped and Stratified Resonators** 293
 12.1 Vibrations of An Inhomogeneous Elastic Panel 294
 12.1.1 Homogeneous Panel 295
 12.1.2 Inhomogeneous Panel 298
 12.2 Shaped Resonators 302
 12.2.1 Expansion and Linear Equations 303
 12.2.2 Nonlinear Theory: Amplitude-Frequency Relation 305
 12.2.3 Spherical Geometry 312
 12.2.3.1 Dominant first harmonic case 320
 12.2.3.2 Geometric acoustics approximation and shocks 321
 12.2.3.3 Inhomogeneous material 327
 12.2.4 Evolution for Cone and Bulb Shapes 334
13. Resonant Sloshing in a Shallow Tank 339
 13.1 Basics of Frequency Dispersion 339
 13.2 Derivation of Evolution Equation in Shallow Tank 342
 13.3 Nonlinearization 346
 13.4 Comparison with Experiment: Solutions of Forced KdV 347
 13.5 Asymptotic Solutions of the Forced Steady State KdV Equation 353
 13.5.1 Steady Solutions: Constant Forcing 354
 13.5.2 Resonant Forcing: \(f(x) = -\pi \sin \pi x \) 357
 13.5.2.1 External orbit 357
 13.5.2.2 Internal orbit 360
 13.5.2.3 Resonant band 361
 13.5.3 Subharmonic Resonant Sloshing, \(\omega = 1/4 \) 364
 13.5.4 Crank Drive 369

14. Nonlinear Resonance in An Open Tube 373

Bibliography 381

Index 391