UNIT 1 The Foundations of Microbiology

1 The Microbial World 1

1.1 Exploring the Microbial World 2
1.2 Microorganisms, Tiny Titans of the Earth 2
1.3 Structure and Activities of Microbial Cells 3
1.4 Microorganisms and the Biosphere 5
1.5 The Impact of Microorganisms on Human Society 6

II Microscopy and the Origins of Microbiology 11
1.6 Light Microscopy and the Discovery of Microorganisms 11
1.7 Improving Contrast in Light Microscopy 13
1.8 Imaging Cells in Three Dimensions 15

III Microbial Cultivation Expands the Horizon of Microbiology 18
1.9 Pasteur and Spontaneous Generation 19
1.10 Koch, Infectious Diseases, and Pure Cultures 21
1.11 Discovery of Microbial Diversity 24

IV Molecular Biology and the Unity and Diversity of Life 25
1.12 Molecular Basis of Life 25
1.13 Woese and the Tree of Life 26
1.14 An Introduction to Microbial Life 29

2 Microbial Cell Structure and Function 34

2.1 Cells of Bacteria and Archaea 35

2.2 The Small World 36

II The Cell Membrane and Wall 39
2.3 The Cytoplasmic Membrane 39
2.4 Bacterial Cell Walls: Peptidoglycan 42
2.5 LPS: The Outer Membrane 45
2.6 Archaeal Cell Walls 47

III Cell Surface Structures and Inclusions 48
2.7 Cell Surface Structures 48
2.8 Cell Inclusions 50
2.9 Gas Vesicles 52
2.10 Endospores 53

IV Cell Locomotion 56
2.11 Flagella, Archaella, and Swimming Motility 56
2.12 Gliding Motility 60
2.13 Chemotaxis and Other Taxes 61

V Eukaryotic Microbial Cells 64
2.14 The Nucleus and Cell Division 64
2.15 Mitochondria, Hydrogenosomes, and Chloroplasts 66
2.16 Other Eukaryotic Cell Structures 68

EXPLORE THE MICROBIAL WORLD
Tiny Cells 38

3 Microbial Metabolism 73

3.1 Feeding the Microbe: Cell Nutrition 74
3.2 Transporting Nutrients into the Cell 75

II Energetics, Enzymes, and Redox 77
3.3 Energy Classes of Microorganisms 77
3.4 Principles of Bioenergetics 78
3.5 Catalysis and Enzymes 80
3.6 Electron Donors and Acceptors 81
3.7 Energy-Rich Compounds 84

III Catabolism: Fermentation and Respiration 85
3.8 Glycolysis and Fermentation 85
3.9 Respiration: Citric Acid and Glyoxylate Cycles 88
3.10 Respiration: Electron Carriers 90
3.11 Electron Transport and the Proton Motive Force 92
3.12 Options for Energy Conservation 94

IV • Biosyntheses 96
3.13 Sugars and Polysaccharides 96
3.14 Amino Acids and Nucleotides 97
3.15 Fatty Acids and Lipids 98

Molecular Information Flow and Protein Processing 102

I • Molecular Biology and Genetic Elements 103
4.1 DNA and Genetic Information Flow 103
4.2 Genetic Elements: Chromosomes and Plasmids 106

II • Copying the Genetic Blueprint: DNA Replication 109
4.3 Templates, Enzymes, and the Replication Fork 110
4.4 Bidirectional Replication, the Replisome, and Proofreading 113

III • RNA Synthesis: Transcription 115
4.5 Transcription in Bacteria 115
4.6 Transcription in Archaea and Eukarya 118

IV • Protein Synthesis: Translation 120
4.7 Amino Acids, Polypeptides, and Proteins 120
4.8 Transfer RNA 123
4.9 Translation and the Genetic Code 124
4.10 The Mechanism of Protein Synthesis 126

V • Protein Processing, Secretion, and Targeting 129
4.11 Assisted Protein Folding and Chaperones 129
4.12 Protein Secretion: The Sec and Tat Systems 130
4.13 Protein Secretion: Gram-Negative Systems 131

UNIT 2 Microbial Growth and Regulation

Microbial Growth and Its Control 137

I • Cell Division and Population Growth 138

Microbial Regulatory Systems 173

I • DNA-Binding Proteins and Transcriptional Regulation 174
6.1 DNA-Binding Proteins 174
6.2 Negative Control: Repression and Induction 176
6.3 Positive Control: Activation 177
6.4 Global Control and the lac Operon 179
6.5 Transcription Controls in Archaea 181

II • Sensing and Signal Transduction 183
6.6 Two-Component Regulatory Systems 183
6.7 Regulation of Chemotaxis 184
6.8 Quorum Sensing 186
6.9 Stringent Response 188
6.10 Other Global Networks 190
14 Metabolic Diversity of Microorganisms 392

I • Phototrophy 393
14.1 Photosynthesis and Chlorophylls 393
14.2 Carotenoids and Phycobilins 396
14.3 Anoxygenic Photosynthesis 398
14.4 Oxygenic Photosynthesis 401

II • Autotrophy and N₂ Fixation 404
14.5 Autotrophic Pathways 405
14.6 Nitrogen Fixation 407

III • Respiratory Processes Defined by Electron Donor 410
14.7 Principles of Respiration 410
14.8 Hydrogen (H₂) Oxidation 412
14.9 Oxidation of Sulfur Compounds 413
14.10 Iron (Fe²⁺) Oxidation 415
14.11 Nitrification 416
14.12 Anaerobic Ammonia Oxidation (Anammox) 418

IV • Respiratory Processes Defined by Electron Acceptor 419
14.13 Nitrate Reduction and Denitrification 419
14.14 Sulfate and Sulfur Reduction 421
14.15 Other Electron Acceptors 423

V • One-Carbon (C₁) Metabolism 425
14.16 Acetogenesis 425
14.17 Methanogenesis 427
14.18 Methanotrophy 431

VI • Fermentation 434
14.19 Energetic and Redox Considerations 434
14.20 Lactic and Mixed-Acid Fermentations 435
14.21 Clostridial and Propionate Fermentations 438
14.22 Fermentations That Lack Substrate-Level Phosphorylation 440
14.23 Syntrophy 441

VII • Hydrocarbon Metabolism 443
14.24 Aerobic Hydrocarbon Metabolism 444
14.25 Anaerobic Hydrocarbon Metabolism 445

15 Functional Diversity of Microorganisms 451

I • Functional Diversity as a Concept 452
15.1 Making Sense of Microbial Diversity 452

II • Diversity of Phototrophic Bacteria 453
15.2 Overview of Phototrophic Bacteria 453
15.3 Cyanobacteria 453
15.4 Purple Sulfur Bacteria 458
15.5 Purple Nonsulfur Bacteria and Aerobic Anoxygenic Phototrophs 459
15.6 Green Sulfur Bacteria 460
15.7 Green Nonsulfur Bacteria 462
15.8 Other Phototrophic Bacteria 463

III • Microbial Diversity in the Sulfur Cycle 464
15.9 Dissimilative Sulfate-Reducers 465
15.10 Dissimilative Sulfur-Reducers 466
15.11 Dissimilative Sulfur-Oxidizers 467

IV • Microbial Diversity in the Nitrogen Cycle 470
15.12 Diversity of Nitrogen-Fixers 470
15.13 Diversity of Nitrifiers and Denitrifiers 472

V • Other Distinctive Functional Groupings of Microorganisms 474
15.14 Dissimilative Iron-Reducers 474
15.15 Dissimilative Iron-Oxidizers 475
15.16 Methanotrophs and Methylotrophs 476
15.17 Microbial Predators 478
15.18 Microbial Bioluminescence 481

VI • Morphologically Diverse Bacteria 483
15.19 Spirochetes 483
15.20 Budding and Prosthecate/Stalked Microorganisms 485
15.21 Sheathed Microorganisms 488
15.22 Magnetic Microbes 489

16 Diversity of Bacteria 494

I • Proteobacteria 495
16.1 Alphaproteobacteria 496
16.2 Betaproteobacteria 499
16.3 Gammaproteobacteria: Enterobacteriales 501
16.4 Gammaproteobacteria: Pseudomonadales and Vibrionales 503
16.5 Deltaproteobacteria and Epsilonproteobacteria 504

II • Firmicutes, Tenericutes, and Actinobacteria 506
16.6 Firmicutes: Lactobacillales 507
16.7 Firmicutes: Nonsporulating Bacillales and Clostridiales 508
16.8 Firmicutes: Sporulating Bacillales and Clostridiales 509
16.9 Tenericutes: The Mycoplasmas 511
16.10 Actinobacteria: Coryneform and Propionic Acid Bacteria 512
16.11 Actinobacteria: Mycobacterium 514
16.12 Filamentous Actinobacteria: Streptomycetes and Relatives 515

III • Bacteroidetes 517
16.13 Bacteroidales 517
16.14 Cytophagales, Flavobacteriales, and Sphingobacteriales 518

IV • Chlamydiae, Planctomycetes, and Verrucomicrobia 520
16.15 Chlamydiae 520
16.16 Planctomycetes 522
16.17 Verrucomicrobia 523

V • Hyperthermophilic Bacteria 523
16.18 Thermotogae and Thermodesulfobacteria 523
16.19 Aquificae 524

VI • Other Bacteria 525
16.20 Deinococcus–Thermus 525
16.21 Other Notable Phyla of Bacteria 526

18 Diversity of Microbial Eukarya 557

I • Organelles and Phylogeny of Microbial Eukarya 558
18.1 Endosymbioses and the Eukaryotic Cell 558
18.2 Phylogenetic Lineages of Eukarya 560

II • Protists 561
18.3 Excavata 561
18.4 Alveolata 563
18.5 Stramenopiles 565
18.6 Rhizaria 567
18.7 Amoebozoa 568

III • Fungi 570
18.8 Fungal Physiology, Structure, and Symbioses 570
18.9 Fungal Reproduction and Phylogeny 572
18.10 Microsporidia and Chytridiomycota 573
18.11 Zygomycota and Glomeromycota 574
18.12 Ascomycota 575
18.13 Basidiomycota 576

IV • Archaeplastida 577
18.14 Red Algae 577
18.15 Green Algae 578
UNIT 5 Microbial Ecology and Environmental Microbiology

19 Taking the Measure of Microbial Systems 583

I * Culture-Dependent Analyses of Microbial Communities 584
19.1 Enrichment Culture Microbiology 584
19.2 Classical Procedures for Isolating Microbes 588
19.3 Selective Single-Cell Isolation: Laser Tweezers, Flow Cytometry, Microfluidics, and High-Throughput Methods 589

II * Culture-Independent Microscopic Analyses of Microbial Communities 591
19.4 General Staining Methods 591
19.5 Fluorescence In Situ Hybridization (FISH) 594

III * Culture-Independent Genetic Analyses of Microbial Communities 595
19.6 PCR Methods of Microbial Community Analysis 595
19.7 Microarrays for Analysis of Microbial Phylogenetic and Functional Diversity 599
19.8 Environmental Genomics and Related Methods 600

IV * Measuring Microbial Activities in Nature 604
19.9 Chemical Assays, Radioisotopic Methods, and Microsensors 604
19.10 Stable Isotopes and Stable Isotope Probing 606
19.11 Linking Functions to Specific Organisms 608
19.12 Linking Genes and Cellular Properties to Individual Cells 610

20 Microbial Ecosystems 615

I * Microbial Ecology 616
20.1 General Ecological Concepts 616
20.2 Ecosystem Service: Biogeochemistry and Nutrient Cycles 617

II * The Microbial Environment 618
20.3 Environments and Microenvironments 618
20.4 Surfaces and Biofilms 620
20.5 Microbial Mats 622

III * Terrestrial Environments 624
20.6 Soils 624
20.7 The Terrestrial Subsurface 629

IV * Aquatic Environments 630
20.8 Freshwaters 631
20.9 The Marine Environment: Phototrophs and Oxygen Relationships 633
20.10 Major Marine Phototrophs 636
20.11 Pelagic Bacteria, Archaea, and Viruses 638
20.12 The Deep Sea 640
20.13 Deep-Sea Sediments 642
20.14 Hydrothermal Vents 645

21 Nutrient Cycles 651

I * Carbon, Nitrogen, and Sulfur Cycles 652
21.1 The Carbon Cycle 652
21.2 Syntrophy and Methanogenesis 654
21.3 The Nitrogen Cycle 656
21.4 The Sulfur Cycle 658

II * Other Nutrient Cycles 659
21.5 The Iron and Manganese Cycles 660
21.6 The Phosphorus, Calcium, and Silica Cycles 662

III * Humans and Nutrient Cycling 666
21.7 Mercury Transformations 666
21.8 Human Impacts on the Carbon and Nitrogen Cycles 667

EXPLORE THE MICROBIAL WORLD
Microbially Wired 662

22 Microbiology of the Built Environment 672

I * Mineral Recovery and Acid Mine Drainage 673
22.1 Mining with Microorganisms 673
UNIT 6 Microbe–Human Interactions and the Immune System

24 Microbial Symbioses with Humans 729

The Inner Life of Bees 696

I • Symbioses between Microorganisms 697
23.1 Lichens 697
23.2 “Chlorochromatium aggregatum” 698

II • Plants as Microbial Habitats 700
23.3 The Legume–Root Nodule Symbiosis 700
23.4 Mycorrhizae 705
23.5 Agrobacterium and Crown Gall Disease 708

III • Insects as Microbial Habitats 709
23.6 Heritable Symbionts of Insects 709
23.7 Termites 712

IV • Other Invertebrates as Microbial Habitats 714
23.8 Hawaiian Bobtail Squid 714
23.9 Marine Invertebrates at Hydrothermal Vents and Cold Seeps 716
23.10 Entomopathogenic Nematodes 717
23.11 Reef-Building Corals 718

V • Mammalian Gut Systems as Microbial Habitats 721
23.12 Alternative Mammalian Gut Systems 721
23.13 The Rumen and Ruminant Animals 722

EXPLORE THE MICROBIAL WORLD
The Multiple Microbial Symbionts of Fungus-Cultivating Ants 711

25 Microbial Infection and Pathogenesis 757

The Microbial Community That Thrives on Your Teeth 757

I • Human–Microbial Interactions 758
25.1 Microbial Adherence 758
25.2 Colonization and Invasion 760
25.3 Pathogenicity, Virulence, and Attenuation 762
25.4 Genetics of Virulence and the Compromised Host 763

II • Enzymes and Toxins of Pathogenesis 764
25.5 Enzymes as Virulence Factors 765
25.6 AB-Type Exotoxins 766
26 Innate Immunity: Broadly Specific Host Defenses 775

I • Fundamentals of Host Defense 776
26.1 Basic Properties of the Immune System 776
26.2 Barriers to Pathogen Invasion 777

II • Cells and Organs of the Immune System 779
26.3 The Blood and Lymphatic Systems 779
26.4 Leukocyte Production and Diversity 780

III • Phagocyte Response Mechanisms 782
26.5 Pathogen Challenge and Phagocyte Recruitment 782
26.6 Pathogen Recognition and Phagocyte Signal Transduction 784
26.7 Phagocytosis and Phagocyte Inhibition 787

IV • Other Innate Host Defenses 788
26.8 Inflammation and Fever 789
26.9 The Complement System 790
26.10 Innate Defenses against Viruses 793

EXPLORE THE MICROBIAL WORLD
Drosophila Toll Receptors—An Ancient Response to Infections 785

27 Adaptive Immunity: Highly Specific Host Defenses 798

I • Principles of Adaptive Immunity 799
27.1 Specificity, Memory, Selection Processes, and Tolerance 799
27.2 Immunogens and Classes of Immunity 802

II • Antibodies 804
27.3 Antibody Production and Structural Diversity 804

27.4 Antigen Binding and the Genetics of Antibody Diversity 808

III • The Major Histocompatibility Complex (MHC) 811
27.5 MHC Proteins and Their Functions 811
27.6 MHC Polymorphism, Polygeny, and Peptide Binding 814

IV • T Cells and Their Receptors 815
27.7 T Cell Receptors: Proteins, Genes, and Diversity 815
27.8 T Cell Diversity 818

V • Immune Disorders and Deficiencies 821
27.9 Allergy, Hypersensitivity, and Autoimmunity 821
27.10 Superantigens and Immunodeficiency 824

28Clinical Microbiology and Immunology 830

I • The Clinical Microbiology Setting 831
28.1 Safety in the Microbiology Laboratory 831
28.2 Healthcare-Associated Infections 832

II • Isolating and Characterizing Infectious Microorganisms 833
28.3 Workflow in the Clinical Laboratory 833
28.4 Choosing the Right Treatment 839

III • Immunological and Molecular Tools for Disease Diagnosis 840
28.5 Immunoassays and Disease 840
28.6 Precipitation, Agglutination, and Immunofluorescence 842
28.7 Enzyme Immunoassays, Rapid Tests, and Immunoblots 844
28.8 Nucleic Acid–Based Clinical Assays 847

IV • Prevention and Treatment of Infectious Diseases 850
28.9 Vaccination 850
28.10 Antibacterial Drugs 852
28.11 Antimicrobial Drugs That Target Nonbacterial Pathogens 858
28.12 Antimicrobial Drug Resistance and New Treatment Strategies 860

EXPLORE THE MICROBIAL WORLD
MRSA—A Formidable Clinical Challenge 836
UNIT 7 Infectious Diseases and Their Transmission

29 Epidemiology 866

A Mysterious New Disease Outbreak 866

I • Principles of Epidemiology 867
 29.1 The Language of Epidemiology 867
 29.2 The Host Community 869
 29.3 Infectious Disease Transmission and Reservoirs 870
 29.4 Characteristics of Disease Epidemics 872

II • Epidemiology and Public Health 874
 29.5 Public Health and Infectious Disease 874
 29.6 Global Health Comparisons 877

III • Emerging Infectious Diseases, Pandemics, and Other Threats 878
 29.7 Emerging and Reemerging Infectious Diseases 878
 29.8 Examples of Pandemics: HIV/AIDS, Cholera, and Influenza 880
 29.9 Public Health Threats from Microbial Weapons 883

EXPLORE THE MICROBIAL WORLD
Textbook Epidemiology: The SARS Epidemic 873

30 Person-to-Person Bacterial and Viral Diseases 887

A New Weapon against AIDS? 887

I • Airborne Bacterial Diseases 888
 30.1 Airborne Pathogens 888
 30.2 Streptococcal Syndromes 889
 30.3 Diphtheria and Pertussis 892
 30.4 Tuberculosis and Leprosy 893
 30.5 Meningitis and Meningococcemia 895

II • Airborne Viral Diseases 896
 30.6 MMR and Varicella-Zoster Infections 896
 30.7 The Common Cold 898
 30.8 Influenza 899

III • Direct-Contact Bacterial and Viral Diseases 901
 30.9 Staphylococcus aureus Infections 901
 30.10 Helicobacter pylori and Gastric Diseases 903
 30.11 Hepatitis 904
 30.12 Ebola: A Deadly Threat 906

31 Vectorborne and Soilborne Bacterial and Viral Diseases 919

A New Look at Rabies Vaccines 919

I • Animal-Transmitted Viral Diseases 920
 31.1 Rabies Virus and Rabies 920
 31.2 Hantavirus and Hantavirus Syndromes 921

II • Arthropod-Transmitted Bacterial and Viral Diseases 922
 31.3 Rickettsial Diseases 922
 31.4 Lyme Disease and Borrelia 925
 31.5 Yellow Fever, Dengue Fever, Chikungunya, and Zika 926
 31.6 West Nile Fever 929
 31.7 Plague 930

III • Soilborne Bacterial Diseases 932
 31.8 Anthrax 932
 31.9 Tetanus and Gas Gangrene 933

32 Waterborne and Foodborne Bacterial and Viral Diseases 937

The Classic Botulism Scenario 937

I • Water as a Disease Vehicle 938
 32.1 Agents and Sources of Waterborne Diseases 938
 32.2 Public Health and Water Quality 939

II • Waterborne Diseases 940
 32.3 Vibrio cholerae and Cholera 940
 32.4 Legionellosis 942
 32.5 Typhoid Fever and Norovirus Illness 942

III • Food as a Disease Vehicle 943
 32.6 Food Spoilage and Food Preservation 944
 32.7 Foodborne Disease and Food Epidemiology 945

IV • Food Poisoning 947
 32.8 Staphylococcal Food Poisoning 947
 32.9 Clostridial Food Poisoning 948