Edited by Claude Fermon and Marcel Van de Voorde

Nanomagnetism

Applications and Perspectives
Contents

Part One Spin Electronics and Magnetic Sensing Applications 1

1 Introduction on Magnetic Sensing and Spin Electronics 3
 Claude Fermon
 1.1 Magnetic Fields 3
 1.1.1 Introduction 3
 1.1.2 Magnetic Field, Magnetic Induction, and Units 4
 1.1.3 Magnetic Materials 4
 1.1.4 Magnetic Field Created by a Magnet 6
 1.1.5 Magnetic Fields Created by Electrical Currents 6
 1.1.6 Magnetic Thin Films 7
 1.1.6.1 Magnetic Anisotropy 8
 1.1.6.2 Magnetic Domains 8
 1.2 Magnetic Field Sensing 9
 1.2.1 Magnetic Sensors for DC and Low-Frequency Applications 9
 1.2.2 Magnetic Sensors for High-Frequency Applications 11
 1.2.3 Very Sensitive Magnetic Sensors 11
 1.3 Introduction to Spin Electronics 12
 1.3.1 Bases 12
 1.3.1.1 Spin Polarization 12
 1.3.1.2 Spin Diffusion Length 12
 1.3.1.3 Spin Currents and Spin Hall Effects 12
 1.4 Main Applications of Spin Electronics 13
 1.4.1 GMR and TMR Sensors 13
 1.4.1.1 Principle 13
 1.4.1.2 Spin Valve Devices 13
 1.4.1.3 Electric Response 14
 1.4.2 Spin Electronics Devices for Storage, MRAM, and Magnetic Logics 16
 1.4.3 Spin Dynamics and Magnonics 16
 References 17
2 Spin Electronics for Biomagnetism and Nuclear Magnetic Resonance 19
Myriam Pannetier Lecoeur, Reina Ayde, and Claude Fermon

2.1 Introduction 19
2.2 Biomagnetic Signals Detection with Spin Electronics Sensors 19
2.2.1 Biomagnetism 19
2.2.2 Sensors for Biomagnetism at Large Scale 21
2.2.2.1 SQUIDs and Atomic Magnetometers 21
2.2.2.2 Mixed Sensors 22
2.2.2.3 MCG Recordings with Mixed Sensors 22
2.2.3 Sensors for Biomagnetism at Local Scale 23
2.2.3.1 Specificities and State of the Art 23
2.2.3.2 Magnetrodes 24
2.3 Nuclear Magnetic Resonance 24
2.3.1 Introduction to NMR 25
2.3.1.1 Spin Manipulation 28
2.3.1.2 Magnetic Resonance Imaging 29
2.3.2 Low-Field MRI 29
2.3.3 Local NMR Spectroscopy 32
2.4 Conclusion and Perspectives 35
References 35

3 Large-Volume Applications of Spin Electronics-Based Sensors 37
Paolo Campiglio and Claude Fermon

3.1 Introduction 37
3.2 General Concepts 38
3.2.1 GMR or TMR Spin Valves? 38
3.2.1.1 Sensitivity and Detectivity 39
3.2.1.2 Resistance and Design Constraints 39
3.2.1.3 ESD Sensitivity and CMOS Integration 39
3.2.1.4 Hysteresis, Field, and Temperature Stability 40
3.2.2 Electronics 41
3.3 Read Heads 42
3.4 Current Sensors 43
3.4.1 Principle 43
3.4.2 Low-Current Integrated Sensors 44
3.4.3 High-Current Sensors 45
3.5 Angle and Compass Sensors 45
3.5.1 Principle of 2D and 3D Measurements 46
3.5.2 Angle Sensors: The Saturated Configuration 47
3.5.3 Compass: The Linear Configuration 48
3.6 Speed Sensors 49
3.6.1 General Principle 49
3.6.2 Rotating Magnets 50
3.6.3 Rotating Ferrous Targets 51
6.2.1 Physics of the NV Defect in Diamond 105
6.2.1.1 Optical Properties 105
6.2.1.2 Optically Detected Magnetic Resonance 105
6.2.1.3 Magnetometry 106
6.2.2 Magnetic Sensing Methods 106
6.2.2.1 ODMR Spectroscopy 106
6.2.2.2 Spin Phase Sensing 107
6.2.2.3 Spin Relaxometry 108
6.3 Experimental Implementations for Sensing and Imaging 109
6.3.1 With a Scanning NV Defect 109
6.3.2 With a Stationary NV Defect 110
6.3.3 Wide-field Imaging of an NV Ensemble 112
6.3.4 Challenges and Further Improvements 113
6.3.4.1 Stand-off Distance 113
6.3.4.2 Sensor Readout 114
6.3.4.3 Diamond Material 114
6.4 Applications 115
6.4.1 Imaging Spin Textures in Ultrathin Ferromagnets 115
6.4.2 Single-Molecule Imaging and Nano-MRI 120
6.5 Conclusions 124
References 124

Part Two Magnetic Nanoparticles 127

7 Introduction to Magnetic Nanoparticles 129
Claude Fermon
7.1 Introduction 129
7.2 Main Properties of Magnetic Nanoparticles 129
7.2.1 Composition and Size 129
7.2.2 Main Magnetic Properties 130
7.3 Synthesis of Magnetic Nanoparticles 132
7.3.1 Toxicity 132
7.4 Main Classes of Applications of Magnetic Nanoparticles 132
7.4.1 Contrast Agents for MRI 132
7.4.2 Labeled Nanoparticles for Cell Manipulation and Counting 133
7.4.3 Hyperthermia for Cancer Treatment 134
7.4.4 Ferrofluids 134
7.4.5 Magnetic Particle Imaging 135
7.5 Conclusions and Perspectives 135
References 136

8 Use of Magnetic Nanoparticles in Biomedical Applications 137
Frank Wiekhorst and Lutz Trahms
8.1 Introduction 137
Part Three Future Applications 201

10 Promising Prospects for Chiral Domain Walls and Magnetic Skyrmions as a New Way to Manipulate and Store Information 203
 Stefania Pizinni and Vincent Cros
10.1 Introduction 203
10.2 Origin and Consequences of an Antisymmetric Exchange Interaction 204
10.2.1 From Antisymmetric Exchange Interaction to Chiral Magnetic Textures 205
10.2.2 First Observations of Chiral Magnetic States in Magnetic Thin Films 208
10.2.3 Chiral Interaction and Skyrmion Lattices 209
10.3 Chiral Néel Walls in Systems with Perpendicular Magnetic Anisotropy and Dzyaloshinskii–Moriya Interaction 211
10.3.1 Dynamics of Chiral Magnetic Domain Wall 213
10.3.2 DW Dynamics as a Probe of the Strength of the DM Interaction 216
10.3.3 Internal Spin Texture of Chiral Domain Walls 218
10.4 Magnetic Skyrmions in Noncrystalline Materials for Stabilization at Room Temperature 221
10.4.1 Room-Temperature Observation of Skyrmions Stabilized by Interfacial Chiral Interaction 222
10.4.2 Creation and Displacement of Skyrmionic Bubbles through Spin Torque 226
10.5 New Device Concepts Based on Chiral Magnetic Objects 228
10.5.1 Chiral Domain Wall-Based Racetrack Memory 229
10.5.2 Skyrmion-Based Racetrack: Advantages Over DW 230
10.5.3 Skyrmion-Based Multilevel MTJs 231
10.5.4 Skyrmion-Based High-Frequency Oscillators 231
10.5.5 Skyrmion Spin Logic Devices 234
10.6 Conclusions and Perspectives 235
 Acknowledgments 236
 References 236

11 Nanomagnetic Devices 239
 Rolf Allenspach
11.1 Introduction 239
11.2 Memory and Storage-Class Memory 240
11.2.1 MRAM 240
11.2.2 Racetrack Shift Register 243
11.2.3 Ratchet Shift Register 245
11.3 Logic Devices 247
11.3.1 The Requirements of Digital Logic 247
11.3.2 Nanomagnet Logic 248
11.3.3 Domain-Wall Logic 252
11.3.4 All-Spin Devices 253
11.3.4.1 A Spin Transfer Torque Domain-Wall Device 254
11.3.4.2 All-Spin Logic 256
11.3.4.3 Spin-Wave Devices 258
11.4 Concluding Remarks 261
References 262

12 Microwave Nanomagnetism: Spin Torque Oscillators and Magnonics 269
Grégoire de Loubens and Matthieu Bailleul
12.1 Introduction 269
12.2 Basics of Magnetization Dynamics 269
12.3 Spin Torque Oscillators 272
12.3.1 Basics of Spin Torque Oscillators 272
12.3.1.1 Working Principles 272
12.3.1.2 Microwave Characteristics 275
12.3.2 Frequency Generation and Signal Processing 276
12.3.3 Frequency Detection 278
12.3.4 Magnetic Recording 279
12.3.5 Advanced Concepts 280
12.4 Magnonics 282
12.4.1 Spin-Wave Basics 282
12.4.2 Control of Spin-Wave Propagation 284
12.4.3 Magnonic Crystals 285
12.4.4 Spin Waves and Spintronics 287
12.4.5 Applications of Magnonics 288
12.5 Conclusions 290
References 291

13 Applications of Magnetic Oxides Thin Films and Nanostructures 297
Aurélie Solignac, Thomas Maroutian, and Philippe Lecoeur
13.1 Introduction 297
13.2 Magnetism of Oxides: Theory 299
13.2.1 Magnetic Order 299
13.2.2 Localized Ferromagnetism 300
13.2.3 Itinerant Ferromagnetism 301
13.2.4 Strongly Electron-Correlated Systems 302
13.2.5 Other Couplings due to Environment 304
13.2.5.1 Crystalline Field 304
13.2.5.2 Spin–Orbit Coupling 305
13.3 Interest in Oxides: Strong Coupling Between Properties 307
13.3.1 Transport and Magnetism 307
13.3.2 Ferroelectricity and Magnetism 311
13.3.2.1 Strain Effect 312
13.3.2.2 Electrostatic Effect 312
13.3.2.3 Interfacial Effect (Tunnel Electroresistance and Exchange Bias) 313
13.4 Conclusions 314
References 314

Index 319