Oil spill and ship detection using high resolution polarimetric X-band SAR data

Domenico Velotto

Deutsches Zentrum für Luft- und Raumfahrt
Institut für Methodik der Fernerkundung
Forschungsstelle Maritime Sicherheit
Bremen

180 Seiten
103 Bilder
18 Tabellen
143 Literaturstellen
Contents

1. **Introduction**
 1.1. Scientific Motivation
 1.2. Problem Statement and Objectives
 1.3. Thesis Outline

2. **SAR Principles and Polarimetry**
 2.1. SAR Imaging Principles
 2.1.1. Radar Cross Section and Speckle
 2.1.2. Geometrical Constraints
 2.1.3. SAR Artifacts
 2.2. Polarimetric SAR Principles
 2.2.1. Wave Polarimetry
 2.2.2. Scattering Matrix and Pauli Vector
 2.2.3. Second Order Statistic
 2.2.4. Eigenvalue decomposition
 2.2.5. Model based decomposition
 2.3. New Generation High Resolution SAR: TerraSAR-X
 2.3.1. First Spaceborne X-band SAR with coherent polarimetric capabilities
 2.3.2. Experimental Dual Receive Antenna DRA mode

3. **Marine Pollution Detection and Discrimination**
 3.1. Introduction
 3.1.1. Rough Surface Scattering
 3.1.2. Bragg Surface Scattering
 3.2. Oil spill monitoring by means of Single polarized SAR data
 3.2.1. State-of-the-Art in operational pollution monitoring
 3.2.2. The Neural Network (NN) approach developed for TerraSAR-X
 3.3. Observation of Marine Slicks exploiting the Co-Polar channel correlation
 3.3.1. Co-Polarized Phase Difference (CPD) and Coherence
 3.3.2. Case studies
 3.3.3. Polarimetric features extracted from the 2x2 Covariance Matrix

4. **Marine Target Detection and Discrimination**
 4.1. State of the Art
 4.1.1. Single Polarization Ship Detector
4.1.2. Target Detector based on spectral analysis

4.2. Multi-Polarization Target Detectors

4.2.1. Overview of target detection using multi polarization SAR data

4.2.2. An approach for target detection using reflection symmetry in Dual-Pol data

4.2.3. Results and algorithm validation

4.3. Discrimination of False Positives caused by Azimuth Ambiguity

4.3.1. Removing Azimuth Ambiguities using Cross-Pol channels

4.3.2. Results and algorithm validation

4.3.3. Discussion on alternative methodologies

5. Synergy between SAR platforms for Maritime Surveillance

5.1. C-/X-band analysis and synergy

5.2. TanDEM-X constellation prospective for maritime applications

6. Summary

6.1. Discussion and Conclusion

6.2. Outlook

A. Relevant publications as part of the thesis

