Contents

List of figures xv
List of symbols xxxix
List of acronyms xliii
Preface to the first edition xlv
Preface to the second edition xlix
Preface to the third edition li
Acknowledgements lii
Authors lv

1 Introduction 1
 1.1 Absorption versus diffuse reflections 4
 1.2 Sustainable absorbers and diffusers 5
References 10

2 Absorbers: applications and basic principles 11
 2.1 Types of absorber 11
 2.2 Reverberation control 12
 2.2.1 A statistical model of reverberation 17
 2.3 Noise control in factories and large rooms with diffuse fields 20
 2.4 Modal control in critical listening spaces 22
 2.5 Echo control in auditoria and lecture theatres—
 basic sound propagation models 23
 2.5.1 Sound propagation—a wave approach 24
 2.5.2 Surface impedance, admittance, reflection
 coefficient, and absorption coefficient 25
 2.6 Absorption in sound insulation—transfer matrix modelling 29
 2.6.1 Transfer matrix modelling 29
 2.7 Pipes, ducts, and silencers—porous absorber characteristics 31
 2.7.1 Characterizing porous absorbers 32
 2.8 Enclosures, barriers, and roads 33
 2.9 Natural noise control 34
 2.10 Hearing protection devices 35
 2.11 Loudspeaker cabinets 36
 2.12 Automotive absorbents and vehicle refinement 36
3 Diffusers: applications and basic principles

3.1 Echo control in auditoria 41
 3.1.1 Example applications 41
 3.1.2 Aesthetics 44
 3.1.3 Wavefronts and diffuse reflections 44
 3.1.4 Some terminology 49

3.2 Reducing coloration in small reproduction rooms 50
 3.2.1 Reflection free zone 51
 3.2.2 Surround sound 57
 3.2.3 Ambiechoic 58

3.3 Reducing coloration in small live rooms 59

3.4 Promoting diffuse fields in reverberation chambers 64

3.5 Improving speech intelligibility 66

3.6 Promoting spaciousness in auditoria 66

3.7 Reducing the effects of early arriving reflections in large spaces 67

3.8 Stage enclosures 68
 3.8.1 Overhead canopies 69
 3.8.2 Rear and side of stage enclosures 72
 3.8.3 Orchestra pits 77
 3.8.4 Outdoor stage shells 77

3.9 Blurring the focusing from concave surfaces 78

3.10 In audience areas 79
 3.10.1 Coverage 79
 3.10.2 Diffuse fields 81

3.11 Diffusing and absorbing lighting 84

3.12 Barriers and streets 86

3.13 Conclusions 86

References 87

4 Measurement of absorber properties

4.1 Impedance tube measurement for absorption coefficient and surface impedance 91
 4.1.1 Transfer function method 94
 4.1.2 Least mean square method 97
 4.1.3 Transmission measurements 97

4.2 Two-microphone free field measurement 100
 4.2.1 Multimicrophone techniques for nonisotropic, nonplanar surfaces 101
 4.2.2 Multimicrophone free field measurement for periodic surfaces 102

4.3 Reverberation chamber method 103
 4.3.1 Measurement of seating absorption 108

4.4 In situ measurement of absorptive properties 110
5 Measurement of reflections: scattering and diffusion

5.1 Diffusion coefficients vs scattering coefficients 131
5.2 The diffusion coefficient 134
 5.2.1 Measuring polar responses 135
 5.2.1.1 Near and far fields 145
 5.2.1.2 Sample considerations 149
 5.2.2 Calculating the diffusion coefficient 150
 5.2.3 Obtaining polar responses 153
 5.2.4 Discussion 153
 5.2.5 Diffusion coefficient table 153
5.3 The scattering coefficient 154
 5.3.1 Principle 155
 5.3.2 Rationale and procedure 156
 5.3.3 Sample considerations 158
 5.3.4 In situ measurement 159
 5.3.5 Predicting the scattering coefficient 160
 5.3.6 The correlation scattering coefficient (from polar responses) 162
 5.3.7 Scattering coefficient table 165
5.4 Other methods for characterizing diffuse reflections 166
 5.4.1 Measuring scattering coefficients by solving the inverse problem 166
 5.4.2 Temporal evaluation 167
5.5 Summary 171
References 171

6 Porous sound absorption

6.1 Absorption mechanisms and characteristics 175
6.2 Some material types 178
 6.2.1 Mineral wool 178
 6.2.2 Foam 180
 6.2.3 Sustainable materials 180
 6.2.4 Curtains (drapes) 183
 6.2.5 Carpets 184
 6.2.6 Acoustic plaster 185
6.2.7 Aerogels 186
6.2.8 Activated carbon 186
6.2.9 Ground 188

6.3 Covers 188

6.4 Basic material properties 191
6.4.1 Flow resistivity 191
6.4.2 Open porosity 194

6.5 Modelling propagation within porous materials 197
6.5.1 Macroscopic empirical models such as Delany and Bazley 197
6.5.2 Further material properties 202
6.5.2.1 Viscous and thermal characteristic lengths 202
6.5.2.2 Tortuosity 203
6.5.3 Semi-phenomenological models 204
6.5.4 Relaxation model 209

6.6 Predicting the surface impedance and absorption coefficient 210
6.6.1 Single layer of a porous absorber with a rigid backing 211
6.6.2 Modelling covers 212
6.6.3 Ground 213
6.6.4 Multilayer porous absorbers 215

6.7 Local and extended reaction 216

6.8 Oblique incidence 216

6.9 Biot theory for elastic framed material 218

6.10 Time domain models 219

6.11 Summary 219

References 219

7 Resonant absorbers 225

7.1 Mechanisms 225

7.2 Example constructions 227
7.2.1 Low-frequency membrane absorber 227
7.2.2 Absorbing wood 229
7.2.3 Absorption and diffusion 231
7.2.4 Microperforation 235
7.2.5 Clear absorbers 236
7.2.6 Masonry devices 239
7.2.7 Plate resonators 239

7.3 Design equations: resonant frequency 239
7.3.1 Helmholtz resonator 241
7.3.2 Membrane absorber 246
7.3.3 Losses 247
7.3.3.1 Porous layer right behind perforations 249
7.3.3.2 Porous layer in the middle of cavity
 with a perforated covering 249
7.3.3.3 More complete solution using transfer matrixes 250
7.3.3.4 Oblique incidence 252

7.3.4 Oblique incidence 252
7.4 Example calculations 253
 7.4.1 Slotted Helmholtz absorber 253
 7.4.2 Porous absorbent filling the cavity 254
 7.4.3 Bass Helmholtz absorber 255

7.5 Other constructions and innovations 255
 7.5.1 Shaped holes and slots 255
 7.5.2 Double resonators 256
 7.5.3 Microperforation 256
 7.5.4 Lateral orifices 260
 7.5.5 Passive electroacoustic absorption 260
 7.5.6 Activated carbon 261

7.6 Summary 262
References 262

8 Other absorbers and diffusers 265
 8.1 Audience and seating 265

8.2 Absorbers from Schroeder diffusers 268
 8.2.1 Energy flow mechanism 269
 8.2.2 Boundary layer absorption 270
 8.2.3 Absorption or diffusion 271
 8.2.4 Depth sequence 272
 8.2.5 Use of mass elements 273
 8.2.6 Number of wells 274
 8.2.7 Theoretical model 274
 8.2.7.1 Admittance of wells 274
 8.2.7.2 From well impedance to absorption: BEM 276
 8.2.7.3 From well impedance to absorption:
 wave decomposition 277

8.3 Volumetric diffusers 279
8.4 Metamaterials and absorbing sonic crystals 281
8.5 Natural absorbers 285
 8.5.1 Tree belts, hedges, shrubs, and crops 285
 8.5.2 Green walls, roofs, and barriers 286
8.6 Summary 288
References 288

9 Prediction of reflection including diffraction 291
 9.1 Boundary element methods 291
 9.1.1 The Helmholtz–Kirchhoff integral equation 292
 9.1.2 General solution method 294
 9.1.2.1 Determining surface pressures 294
 9.1.2.2 Determining external point pressures 296
 9.1.2.3 2D versus 3D 297
9.1.3 Thin-panel solution 298
 9.1.3.1 Non-absorbing surface 298
 9.1.3.2 Planar, thin surface with non-zero admittance 300

9.1.4 Acceleration schemes 301

9.1.5 BEM accuracy: thin rigid reflectors 301

9.1.6 BEM accuracy: Schroeder diffusers 302

9.1.7 BEM accuracy: hybrid surfaces 304

9.2 Kirchhoff 305

9.3 Fresnel 308

9.4 Fraunhofer or Fourier solution 310
 9.4.1 Near and far field 311
 9.4.2 Fraunhofer theory accuracy 312

9.5 Finite difference time domain 313
 9.5.1 Stability: spatial and time steps 317
 9.5.2 Numerical dispersion and simulation bandwidth 318
 9.5.3 Boundary modelling and including objects in domain 318
 9.5.4 Excitation 320
 9.5.5 Near to far field transformation 322
 9.5.6 Realization 322

9.6 Time-domain boundary integral methods 322
 9.6.1 Kirchhoff and Fraunhofer solutions 323
 9.6.2 BEM solution 324

9.7 Other methods 325
 9.7.1 Finite element analysis 325
 9.7.2 Edge diffraction models 325
 9.7.3 Wave decomposition and mode matching approaches 326
 9.7.4 Random roughness 326
 9.7.5 Boss models 327

9.8 Summary 327

References 327

10 Schroeder diffusers 331

10.1 Basic principles and construction 331

10.2 Design equations 333

10.3 Some limitations and other considerations 334

10.4 Sequences 337
 10.4.1 Maximum length sequence diffuser 337
 10.4.2 Quadratic residue sequence 340
 10.4.3 Primitive root sequence 340
 10.4.4 Index sequences 343
 10.4.5 Other sequences 343

10.5 Periodicity and modulation 345
 10.5.1 Fractal 352
 10.5.2 Diffusing covers 352

10.6 Improving the low-frequency response 355
10.7 Multidimensional devices 358

10.8 Absorption 362

10.9 Do the simplest theories work? 363

10.10 Optimization 365
 - 10.10.1 Process 365
 - 10.10.2 Results 368

10.11 Summary 370

References 370

11 Geometric reflectors and diffusers 373

11.1 Planesurfaces 373
 - 11.1.1 Single-panel response 373
 - 11.1.2 Panel array response: far field arc 379
 - 11.1.3 Panel array response: near field 380

11.2 Triangles and pyramids 382
 - 11.2.1 Arrays of triangles 385

11.3 Concave surfaces 387

11.4 Convex surfaces 389
 - 11.4.1 Geometric theory and cutoff frequencies 390
 - 11.4.2 Performance of simple curved reflectors 392
 - 11.4.2.1 Arrays of semicylinders 393

11.5 Optimized curved surfaces 396
 - 11.5.1 Example application 396
 - 11.5.2 Design process 396
 - 11.5.3 Performance for unbaflled single optimized diffusers 399
 - 11.5.4 Periodicity and modulation 400
 - 11.5.5 Stage canopies 403

11.6 Fractals 407
 - 11.6.1 Fourier synthesis 408
 - 11.6.2 Step function addition 409

11.7 Materials 411

11.8 Summary 412

References 412

12 Hybrid surfaces 415

12.1 Example devices 415

12.2 Concepts 419

12.3 Number sequences 420
 - 12.3.1 One-dimensional MLS 420
 - 12.3.2 One-dimensional optical sequences 422
 - 12.3.3 One-dimensional ternary and quadriphase sequences 423
 - 12.3.4 Optimized sequences 424
 - 12.3.5 Two-dimensional sequences 426

12.4 Absorption 430

12.5 Accuracy of the Fourier theory 431
12.6 Diffuse reflections 433
 12.6.1 Boundary element modelling 435
 12.6.2 Planar devices 437
12.7 Summary 439
References 439

13 Absorbers and diffusers in rooms and geometric room acoustic models 441
 13.1 Converting absorption coefficients 441
 13.1.1 From impedance tube or free field to random incidence 441
 13.1.2 From the reverberation chamber to real rooms 445
 13.2 Absorption in GRAMs 445
 13.3 Diffuse reflections in GRAMs 447
 13.3.1 Ray redirection 448
 13.3.2 Transition order using particle tracing 449
 13.3.3 Diffuse energy decays with the reverberation time of the hall 449
 13.3.4 Radiosity and radiant exchange 450
 13.3.5 Early sound field wave model 450
 13.3.6 Edge scattering for small surfaces 450
 13.3.7 Distributing the diffuse energy 450
 13.3.8 Scattering coefficients 453
 13.4 Summary 455
References 456

14 Active absorbers 459
 14.1 Some principles of active control 459
 14.2 An example active impedance system and a general overview 461
 14.3 Active absorption in ducts 464
 14.4 Active absorption in three dimensions 465
 14.4.1 Low-frequency modal control—example results 466
 14.4.2 Low-frequency modal control—alternative control regime 467
 14.5 Hybrid active–passive absorption 469
 14.6 Summary 473
References 473

Appendix A: Table of absorption coefficients 475
Appendix B: Normalized diffusion coefficient table 481
Appendix C: Correlation scattering coefficient tables 487
Appendix D: Random incidence scattering coefficient table 497
Index 503