Quiver Representations
and Quiver Varieties

Alexander Kirillov Jr.
Contents

Preface xi

Part 1. Dynkin Quivers

Chapter 1. Basic Theory 3
 §1.1. Basic definitions 3
 §1.2. Path algebra; simple and indecomposable representations 7
 §1.3. K-group and dimension 11
 §1.4. Projective modules and the standard resolution 11
 §1.5. Euler form 15
 §1.6. Dynkin and Euclidean graphs 16
 §1.7. Root lattice and Weyl group 20

Chapter 2. Geometry of Orbits 23
 §2.1. Representation space 23
 §2.2. Properties of orbits 24
 §2.3. Closed orbits 26

Chapter 3. Gabriel’s Theorem 31
 §3.1. Quivers of finite type 31
 §3.2. Reflection functors 32
 §3.3. Dynkin quivers 38
 §3.4. Coxeter element 41
 §3.5. Longest element and ordering of positive roots 43
Contents

Chapter 4. Hall Algebras 47
§4.1. Definition of Hall algebra 47
§4.2. Serre relations and Ringel’s theorem 52
§4.3. PBW basis 56
§4.4. Hall algebra of constructible functions 61
§4.5. Finite fields vs. complex numbers 66

Chapter 5. Double Quivers 69
§5.1. The double quiver 69
§5.2. Preprojective algebra 70
§5.3. Varieties $\Lambda(v)$ 72
§5.4. Composition algebra of the double quiver 75

Part 2. Quivers of Infinite Type

Chapter 6. Coxeter Functor and Preprojective Representations 83
§6.1. Coxeter functor 84
§6.2. Preprojective and preinjective representations 86
§6.3. Auslander–Reiten quiver: Combinatorics 88
§6.4. Auslander–Reiten quiver: Representation theory 92
§6.5. Preprojective algebra and Auslander–Reiten quiver 96

Chapter 7. Tame and Wild Quivers 103
§7.1. Tame-wild dichotomy 103
§7.2. Representations of the cyclic quiver 105
§7.3. Affine root systems 106
§7.4. Affine Coxeter element 107
§7.5. Preprojective, preinjective, and regular representations 112
§7.6. Category of regular representations 113
§7.7. Representations of the Kronecker quiver 118
§7.8. Classification of regular representations 121
§7.9. Euclidean quivers are tame 126
§7.10. Non-Euclidean quivers are wild 127
§7.11. Kac’s theorem 129
Chapter 8. McKay Correspondence and Representations of Euclidean Quivers

§8.1. Finite subgroups in SU(2) and regular polyhedra 133
§8.2. ADE classification of finite subgroups 135
§8.3. McKay correspondence 141
§8.4. Geometric construction of representations of Euclidean quivers 146

Part 3. Quiver Varieties

Chapter 9. Hamiltonian Reduction and Geometric Invariant Theory

§9.1. Quotient spaces in differential geometry 159
§9.2. Overview of geometric invariant theory 160
§9.3. Relative invariants 163
§9.4. Regular points and resolution of singularities 168
§9.5. Basic definitions of symplectic geometry 171
§9.6. Hamiltonian actions and moment map 174
§9.7. Hamiltonian reduction 177
§9.8. Symplectic resolution of singularities and Springer resolution 180
§9.9. Kähler quotients 182
§9.10. Hyperkähler quotients 186

Chapter 10. Quiver Varieties

§10.1. GIT quotients for quiver representations 191
§10.2. GIT moduli spaces for double quivers 195
§10.3. Framed representations 200
§10.4. Framed representations of double quivers 204
§10.5. Stability conditions 206
§10.6. Quiver varieties as symplectic resolutions 210
§10.7. Example: Type A quivers and flag varieties 212
§10.8. Hyperkähler construction of quiver varieties 216
§10.9. \(\mathbb{C}^\times \) action and exceptional fiber 219
Chapter 11. Jordan Quiver and Hilbert Schemes 225
§11.1. Hilbert schemes 225
§11.2. Quiver varieties for the Jordan quiver 227
§11.3. Moduli space of torsion free sheaves 230
§11.4. Anti-self-dual connections 235
§11.5. Instantons on \mathbb{R}^4 and ADHM construction 238

Chapter 12. Kleinian Singularities and Geometric McKay Correspondence 241
§12.1. Kleinian singularities 241
§12.2. Resolution of Kleinian singularities via Hilbert schemes 243
§12.3. Quiver varieties as resolutions of Kleinian singularities 245
§12.4. Exceptional fiber and geometric McKay correspondence 248
§12.5. Instantons on ALE spaces 253

Chapter 13. Geometric Realization of Kac–Moody Lie Algebras 259
§13.1. Borel–Moore homology 259
§13.2. Convolution algebras 261
§13.3. Steinberg varieties 264
§13.4. Geometric realization of Kac–Moody Lie algebras 266

Appendix A. Kac–Moody Algebras and Weyl Groups 273
§A.1. Cartan matrices and root lattices 273
§A.2. Weight lattice 274
§A.3. Bilinear form and classification of Cartan matrices 275
§A.4. Weyl group 276
§A.5. Kac–Moody algebra 277
§A.6. Root system 278
§A.7. Reduced expressions 280
§A.8. Universal enveloping algebra 281
§A.9. Representations of Kac–Moody algebras 282

Bibliography 285
Index 293