Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

Edited by

Vadim V. Silberschmidt
Contents

List of contributors xi
Woodhead Publishing Series in Composites Science and Engineering xiii

1 Introduction 1
V.V. Silberschmidt

Part One Low-velocity loading 5

2 Damage tolerance of composite structures under low-velocity impact 7
C. Bouvet, S. Rivallant
2.1 Introduction 7
2.2 Principles of damage tolerance 8
2.3 The different damage types 11
2.4 Impact damage 15
2.5 Damage detectability 21
2.6 Residual strength after impact 25
2.7 Impact threat 28
2.8 Conclusions 30
References 31

3 Damage in laminates from low-velocity impacts 35
S. Abrate
3.1 Introduction 35
3.2 Impact damage 36
3.3 Damage detection and structural health monitoring 47
3.4 Impact damage predictions for low-velocity impacts 53
3.5 Conclusions 57
References 57

4 Multiscale modeling of delamination damage in laminated structures 71
R. Massabò
4.1 Introduction 71
4.2 Models for laminated structures 76
4.3 A multiscale model for multilayered plates with imperfect interfaces and delaminations 80
4.4 Static and dynamic characteristics of laminated plates with cohesive interfaces and delaminations subjected to thermomechanical loading 93
4.5 Conclusions 106
Acknowledgments 107
References 107
Appendix 109

5 Low-velocity impact of composite laminates: damage evolution 117
Y. Shi, C. Pinna, C. Soutis
5.1 Introduction 117
5.2 Composite damage criteria 118
5.3 Damage prediction of composites under low-velocity impact 130
5.4 Conclusions 143
References 144

6 Low-velocity impact on laminates 147
G. Minak, M. Fotouhi, M. Ahmadi
6.1 Low-velocity impact on thin and thick laminates 147
6.2 Low-velocity impact on thin and thick laminates under preload (tension/compression) 148
6.3 Low-velocity impact on curved laminates 155
6.4 Conclusions 162
References 163

Part Two High-velocity loading 167

7 High-velocity impact damage in CFRP laminates 169
S. Yashiro, K. Ogi
7.1 Introduction 169
7.2 Experiments 171
7.3 Experimental results 173
7.4 Discussion 178
7.5 Conclusions 188
References 189

8 Dynamic damage in FRPs: from low to high velocity 193
V.A. Phadnis, A. Roy, V.V. Silberschmidt
8.1 Introduction 193
8.2 Impact response of composite materials 193
8.3 Damage mechanisms of FRPs under high-velocity impact 196
8.4 Air-blast response of curved CFRP laminates 199
8.5 Ballistic impact response of hybrid woven FRPs 211
8.6 Conclusions 219
Acknowledgements 220
References 220
Part Three Shock and blast 223

9 The dynamic loading response of carbon-fiber-filled polymer composites 225
D.M. Dattelbaum, J.D. Coe
9.1 Introduction 225
9.2 Materials 234
9.3 Methods 239
9.4 Results 244
9.5 Discussion of shock response of CP and CE composites 263
9.6 Summary and conclusions 272
Acknowledgments 274
References 275

10 The response to underwater blast 279
V.L. Tagarielli, A. Schiffer
10.1 Introduction 279
10.2 Laboratory-scale underwater blast experiments 281
10.3 Experimental results 286
10.4 Modelling and optimisation 298
10.5 Conclusions 304
Acknowledgements 306
References 306

11 Dynamic loading of composite structures with fluid—structure interaction 309
Y.W. Kwon
11.1 Introduction 309
11.2 Experimental study of impact on composite structures with FSI 309
11.3 Numerical analysis of impact on composite structures with FSI 319
11.4 Experimental study of vibration of composite structures in water 322
11.5 Numerical analysis of vibration of composite structures in water 324
11.6 Experimental study of cyclic loading of composite structures with FSI 330
11.7 Numerical analysis of cyclic loading of composite structures with FSI 333
11.8 Conclusions 335
References 336

12 Shock loading of polymer composites 337
P.J. Hazell
12.1 Shock propagation in composites 337
12.2 The response of composites to air-blast loads 349
12.3 Concluding remarks and future research needs 357
References 358
<table>
<thead>
<tr>
<th>13</th>
<th>Blast response of sandwich structures: the influence of curvature</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G.S. Langdon, C.J. von Klemperer, G.M. Sinclair</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>365</td>
</tr>
<tr>
<td>13.2</td>
<td>Materials and manufacturing</td>
<td>367</td>
</tr>
<tr>
<td>13.3</td>
<td>Quasi-static material characterisation</td>
<td>369</td>
</tr>
<tr>
<td>13.4</td>
<td>Blast test method</td>
<td>371</td>
</tr>
<tr>
<td>13.5</td>
<td>Blast test results</td>
<td>371</td>
</tr>
<tr>
<td>13.6</td>
<td>Discussion</td>
<td>376</td>
</tr>
<tr>
<td>13.7</td>
<td>Conclusions</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>389</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Cellular sandwich composites under blast loads</th>
<th>391</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J.P. Casas-Rodriguez, J.C. Calle, V. Robinson, A. Maranion</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>391</td>
</tr>
<tr>
<td>14.2</td>
<td>Shock waves during blast events</td>
<td>392</td>
</tr>
<tr>
<td>14.3</td>
<td>Material behavior of cellular materials</td>
<td>399</td>
</tr>
<tr>
<td>14.4</td>
<td>Shock-wave attenuation by cellular core sandwich composite</td>
<td>407</td>
</tr>
<tr>
<td>14.5</td>
<td>Conclusions</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>420</td>
</tr>
</tbody>
</table>

| Part Four | **Impact and penetration** | 423 |

<table>
<thead>
<tr>
<th>15</th>
<th>Ballistic impact behavior of composites: analytical formulation</th>
<th>425</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.K. Naik</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>425</td>
</tr>
<tr>
<td>15.2</td>
<td>Materials for ballistic protection</td>
<td>428</td>
</tr>
<tr>
<td>15.3</td>
<td>Composites for high-performance applications</td>
<td>428</td>
</tr>
<tr>
<td>15.4</td>
<td>Ballistic impact on composite targets</td>
<td>430</td>
</tr>
<tr>
<td>15.5</td>
<td>Solution procedure</td>
<td>447</td>
</tr>
<tr>
<td>15.6</td>
<td>Experimental studies</td>
<td>449</td>
</tr>
<tr>
<td>15.7</td>
<td>Results and discussion</td>
<td>450</td>
</tr>
<tr>
<td>15.8</td>
<td>Enhancing ballistic protection capability of composite targets</td>
<td>462</td>
</tr>
<tr>
<td>15.9</td>
<td>Conclusions</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Appendix B</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Appendix C</td>
<td>469</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Impact resistance of sandwich plates</th>
<th>471</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y. Bahei-El-Din, M. Shazly, S. Salem</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>471</td>
</tr>
<tr>
<td>16.2</td>
<td>Damage-mitigating sandwich plate designs</td>
<td>472</td>
</tr>
</tbody>
</table>
16.3 Experimental assessment of impact resistance of sandwich plates 473
16.4 Modeling 482
16.5 Conclusions 485
 Acknowledgments 486
 References 487

17 Impact behaviour of fibre—metal laminates 491
R. Das, A. Chanda, J. Brechou, A. Banerjee
17.1 Introduction 491
17.2 Parameters affecting impact behaviour of FMLs 495
17.3 Low-velocity impacts on FMLs 501
17.4 High-velocity impacts on FMLs 516
17.5 Response of FMLs under blast loading 526
17.6 Comparison of properties and performance of FMLs 528
17.7 Summary and future prospects 530
 Acknowledgement 532
 References 532

Part Five Sports applications 543

18 Impact performance of sports composites 545
L. Smith, J. Kensrud
18.1 Introduction 545
18.2 Background 545
18.3 Experiment 550
18.4 Results 551
18.5 Discussion 556
18.6 Summary 556
 Acknowledgments 556
 References 557

19 Dynamic large-deflection bending of laminates 559
H. Ullah, V.V. Silberschmidt
19.1 Introduction 559
19.2 Experimental methods 560
19.3 Finite-element simulations 567
19.4 Conclusions 579
 References 580

Index 583