Nanocantilever Beams
Modeling, Fabrication, and Applications

edited by
Ioana Voiculescu
Mona Zaghloul

Pan Stanford Publishing
Contents

Preface

PART 1: TECHNIQUES FOR THE FABRICATION OF NANOCANTILEVER BEAMS

1. **Nanocantilever Beam Fabrication for CMOS Technology Integration**
 Gemma Rius and Francesc Perez-Murano
 1.1 From Micromechanics to Nanomechanics
 1.2 Lithography-Based Fabrication of Nanomechanical Structures
 1.2.1 Process Flow for the Fabrication of Mechanical Devices
 1.2.2 Nanolithographies for the Patterning of Nanomechanical Devices
 1.2.2.1 Electron beam lithography
 1.2.2.2 Focused ion beam patterning
 1.2.2.3 Nanostencil lithography
 1.3 Integration of NEMS into CMOS Technology
 1.3.1 Interest of NEMS/CMOS Integration
 1.3.2 CMOS Integration: Hybrid versus Monolithic Approach
 1.3.3 NEMS–CMOS Fabrication Based on Nanolithography Methods
 1.3.3.1 Electron beam lithography
 1.3.3.2 Ion beam patterning
 1.3.3.3 Nanostencil lithography
 1.3.3.4 Deep UV optical lithography
 1.4 Concluding Remarks
2. Polymer Cantilevers and Novel Transduction Techniques for Nanoelectromechanical Sensing

Prasenjit Ray, V. Seena, and V. Ramgopal Rao

2.1 Different Transduction Mechanisms

2.1.1 Piezoresistive Transduction

2.1.1.1 Metal strain gauge

2.1.1.2 Doped silicon piezoresistor

2.1.1.3 Polymer composite piezoresistors

2.1.2 Piezoelectricity

2.1.3 Capacitive Sensing Methods for MEMS

2.1.4 Tunneling MEMS

2.1.5 Thermal MEMS Sensor

2.1.6 MOSFET-Embedded MEMS Sensor

2.2 Polymer Microcantilever Sensors with Novel Transduction Mechanisms

2.2.1 SU-8/MWNT Nanocomposite Film-Based Polymeric Piezoresistive Microcantilever

2.2.1.1 SU-8/MWNT composite film preparation

2.2.1.2 Electrical characterization

2.2.1.3 Polymer micro-cantilever fabrication with SU-8/MWNT composite as piezoresistor

2.2.1.4 Electromechanical characterization of the fabricated micro-cantilever

2.2.2 Organic CantiFET

2.2.2.1 Fabrication process integration of organic CantiFET

2.2.2.2 Characterization of organic CantiFET

2.2.3 Al-Doped ZnO Thin-Film Transistor-Embedded Polymeric Micro-Cantilever as a Piezoresistive Sensor

2.2.3.1 Material characterization

2.2.3.2 Device fabrication
2.2.3.3 Electrical and electromechanical characterization 61
2.2.3.4 Mechanical characterization 64

2.2.4 ZnO Nanowire–Embedded Strain Sensing Cantilever 65
2.2.4.1 Material Characterization 66
2.2.4.2 Device fabrication 69
2.2.4.3 Electrical and mechanical characterization of the device 72

2.3 Summary 74

PART 2: NONLINEARITY OF NANOCANTILEVER BEAM RESONATORS

3. Nonlinear Dynamics and Its Applications in Nanocantilevers 81

Najib Kacem

3.1 Introduction 81
3.2 Resonant Sensor Specifications 83
 3.2.1 Mechanical Analysis 83
 3.2.1.1 Resonance frequency 83
 3.2.1.2 Sensitivity 85
 3.2.1.3 Dynamic response 85
 3.2.2 Quality Factor 86
 3.2.2.1 Gas friction 87
 3.2.2.2 Surface losses 87
 3.2.2.3 Clamping loss 88
 3.2.2.4 Thermoelastic loss 88
 3.2.2.5 Ohmic loss 89
 3.2.3 Thermomechanical Noise 89
 3.2.4 Resolution 90
 3.2.5 Physical Nonlinearities 91
 3.2.6 Nonlinearities and Noise Mixing 93
3.3 Nanocantilever Based on Electrostatic Detection 94
 3.3.1 Equation of Motion 95
 3.3.2 Normalization 96
3.3.3 Solving 96
3.3.4 Critical Amplitude 100
 3.3.4.1 The mechanical critical amplitude 100
 3.3.4.2 The electrostatic critical amplitude 101
 3.3.4.3 Engineering optimization 102
3.3.5 Fabrication 103
3.3.6 Electrical Characterization 105
 3.3.6.1 Measurements in air 108
 3.3.6.2 Measurements in vacuum 109
3.4 Nanocantilever Based on Piezoresistive Detection 111
 3.4.1 Device Description 111
 3.4.2 Transduction 112
 3.4.3 Equation of Motion 113
 3.4.4 Normalization and Solving 114
 3.4.5 The Critical Amplitude 116
 3.4.5.1 The critical mechanical amplitude 116
 3.4.5.2 The critical electrostatic amplitude 117
 3.4.5.3 Engineering optimization 117
 3.4.6 Fabrication 118
 3.4.7 Electrical Characterization 119
 3.4.7.1 ω Down-mixing technique 120
 3.4.7.2 Optimal DC voltage 123
 3.4.7.3 2ω Down-mixing technique 124
 3.4.8 Mass Resolution Enhancement 127
3.5 Conclusions 129

4. Intentional Nonlinearity for Design of Micro/Nanomechanical Resonators 137

Hanna Cho, Lawrence A. Bergman, Min-Feng Yu, and Alexander F. Vakakis

4.1 Nonlinear Dynamics of Micro/Nanomechanical Resonators 139
4.1.1 Origin of Nonlinearity 140
 4.1.1.1 Geometric nonlinearity: Nonlinear elastic restoring force 140
 4.1.1.2 Nonlinear external potential 142
 4.1.1.3 Nonlinear interactions 142
 4.1.1.4 Nonlinear damping 143

4.1.2 Linear and Nonlinear Response 143

4.2 Implementation of Intentional Nonlinearity 146
 4.2.1 Intrinsically Nonlinear Nanoresonator 146
 4.2.1.1 Design strategy 146
 4.2.1.2 Theoretical model 149
 4.2.1.3 Device fabrication and experiment 152
 4.2.1.4 Nonlinear response 153
 4.2.2 Nonlinear Microcantilever-Nanotube System I 155
 4.2.2.1 Design strategy 155
 4.2.2.2 Theoretical model 156
 4.2.2.3 Device fabrication and experiment 160
 4.2.2.4 Nonlinear response 161
 4.2.3 Nonlinear Microcantilever-Nanotube System II 166
 4.2.3.1 Design strategy 166
 4.2.3.2 Theoretical model 167
 4.2.3.3 Device fabrication and experiment 170
 4.2.3.4 Nonlinear response 170

4.3 Applications 172
 4.3.1 Mass Sensing 172
 4.3.2 Damping Sensing 176
 4.3.3 Atomic Force Microscopy 179

4.4 Concluding Remarks 186
PART 3: APPLICATIONS OF NANOCANTILEVER BEAMS

5. Electromechanical Properties and Applications of Carbon Nanotube Nanocantilevers

Changhong Ke

5.1 Introduction

5.2 Carbon Nanotubes

5.3 Electromechanical Properties of Carbon Nanotube Cantilevers: Modeling and Experiments

5.3.1 Electromechanical Modeling

5.3.1.1 Van der Waals interactions

5.3.1.2 Electrostatic interactions

5.3.1.3 Governing equations

5.3.1.4 Analytical solutions of the pull-in voltage

5.3.2 Electromechanical Characterization

5.3.2.1 Small deformation regime

5.3.2.2 Finite kinematics regime

5.4 Carbon Nanotube Cantilever-Based Electromechanical Devices

5.4.1 Feedback-Controlled Nanocantilever Switches

5.4.2 Dual-Side Actuated Nanocantilever Resonators

6. Membrane-Type Surface Stress Sensor

Genki Yoshikawa

6.1 Introduction

6.2 Membrane-Type Surface Stress Sensor

6.2.1 Piezoresistive Read-Out

6.2.2 Structural Optimization for Efficient Transduction of Induced Stress

6.2.3 Fine-Tuning of Each Part

6.2.4 Experimental Verification

6.3 Improvement in User Experience
7. Mechanical Properties Characterization of PZT Nanofibers 243

Xi Chen, Nan Yao, and Yong Shi

7.1 Introduction 243
7.2 PZT Nanofiber Preparation 244
7.3 Young’s Modulus Determination 246
 7.3.1 Electric Field–Induced Resonant Excitation Method 246
 7.3.2 Young’s Modulus Measurement of PZT Nanofiber 247
7.4 Stiffness Adjustment of PZT Nanofiber 250
 7.4.1 Electron Beam–Induced Polarization 250
 7.4.2 Experiment 252
7.5 Conclusion 256

8. Micro- and Nanomechanical String Resonators 261

Tom Larsen and Silvan Schmid

8.1 Introduction 262
8.2 The String Approximation 263
8.3 Quality Factor of String Resonators 265
8.4 String Resonator Applications 268
 8.4.1 Mass Sensing 269
 8.4.2 Temperature Sensing 272
 8.4.3 String-Based Photothermal Spectroscopy 275
8.5 Conclusions 278

9. Optical Transduction and Actuation of Subwavelength Nanomechanical Resonators 285

Eduardo Gil-Santos, Valerio Pini, Álvaro San Paulo, Montserrat Calleja, Javier Tamayo, and Daniel Ramos

9.1 Introduction 285
10. Cantilever Resonance Detection Using Nanophotonic Structures

Vincent T. K. Sauer, Zhu Diao, and Wayne K. Hiebert

10.1 Introduction 315
10.2 Nanophotonic Devices
 10.2.1 Fiber-Chip Light Coupling 317
 10.2.2 Light Propagation 320
 10.2.3 Optical Devices Used for Mechanical Beam Interaction 324
10.3 Nano-Optomechanical Systems 325
10.4 Nanophotonic Probing of Cantilevers
 10.4.1 Mach–Zehnder Interferometer Readout 328
 10.4.2 Optical Cavity Readout 330
 10.4.3 Device Optimization 333
10.5 Conclusion 334

11. Integrated Silicon Optomechanical Transducers and Their Application in Atomic Force Microscopy

Jie Zou, Marcelo Davanco, Yuxiang Liu, Thomas Michels, Kartik Srinivasan, and Vladimir Aksyuk

11.1 Introduction 343
11.2 Optomechanical Transduction and Device Fabrication
 11.2.1 Design and Transduction Scheme 346
 11.2.2 Fabrication 349
 11.2.3 Detection Setup 349
11.3 Numerical Simulation 351
 11.3.1 Optical Resonances 351
11.3.2 Mechanical Resonances 353
11.3.3 Optomechanical Coupling Rate 355
11.4 Towards Optomechanical AFM Probes 356
11.4.1 Wide Range of Spring Constants 356
11.4.2 Towards Optomechanical AFM 358
11.5 Summary and Perspective 360

12. Nanocantilever Beam for Gas-Sensing Applications 367

Ritu Bajpai, Mona Zaghloul, Abhishek Motayed, and Albert Davydov

12.1 Metal Oxides for Gas Sensing 368
12.2 3D vs. 2D Sensors 371
12.3 Properties of GaN, ZnO, and SnO₂ Nanostructures 372
 12.3.1 Properties of ZnO and SnO₂ Nanostructures 372
 12.3.2 Properties of GaN Nanowires 373
12.4 Device Fabrication 374
12.5 Device Characterization 376
12.6 Results 378
 12.6.1 Response of the ZnO NP/GaN NW Devices 378
 12.6.1.1 Response to the breathing air 379
 12.6.1.2 Response to nitrogen 379
 12.6.1.3 Response to alcohols 380
 12.6.1.4 Response to acetone, benzene and hexane 382
 12.6.2 Response of the SnO₂ NP/GaN NW Devices 383
 12.6.3 Response of ZnO NW Devices 385
 12.6.3.1 Response to air 385
 12.6.3.2 Response to nitrogen 386
 12.6.3.3 Response to alcohols 386
 12.6.3.4 Response to acetone, benzene, and hexane 388
12.6.4 Summary of Sensing Results 389

12.7 Sensing Mechanism 390

12.7.1 Sensing Properties of ZnO Nanowire Devices 390
 12.7.1.1 Response to air 391
 12.7.1.2 Response to nitrogen 392
 12.7.1.3 Response to alcohols 392
 12.7.1.4 Response to other chemicals 394

12.7.2 Sensing Properties of Hybrid NP/NW Sensors 394
 12.7.2.1 Response to alcohols 395
 12.7.2.2 Response to nitrogen 396
 12.7.2.3 Response to water 397

12.8 Modeling of Nanowire Devices 397

12.8.1 Simulation of Resonant Frequency 397
 12.8.1.1 Modal analysis 398
 12.8.1.2 Harmonic analysis 399

12.8.2 Simulation of a Mass Sensor 400

12.8.3 Theoretical Analysis 401
 12.8.3.1 Fundamental resonant frequency calculation 401

12.8.4 Mass Frequency Relationship 402

12.8.5 Comparison of Simulation and Theoretical Results 402
 12.8.5.1 Comparison of the cantilever and the bridge structure 402

12.9 Conclusion 404

12.10 Applications 405

13. Bimaterial Nanocantilever Beam Calorimeter for Atmospheric Pressure and Liquid Applications 411

Ioana Voiculescu, Masaya Toda, Takahito Ono, and Fei Liu

13.1 Introduction 411

13.2 Fabrication of Cantilever Beam Calorimeter 412

13.3 Thermal Model at Atmospheric Pressure with Heat Locally Applied at the Free End 414
13.4 Thermal Model at Atmospheric Pressure with Heat Uniformly Distributed on the Cantilever Beam Length 418
13.5 Thermal Model with the Cantilever Beam Immersed in the Liquid with Heat Locally Applied at the Free End 419
13.6 Conclusions 426

14. Advances and Challenges to Bring Nanomechanical Biosensors to Biochemistry Labs and Clinical Use 431
Priscila M. Kosaka, Javier Tamayo, and Monsterrat Calleja

14.1 Introduction 431
14.2 Biosensors Based on Nanomechanical Systems 433
 14.2.1 Modes of Operation 433
 14.2.2 Immobilization of Receptors 434
14.3 High Throughput Measurements 436
 14.3.1 Functionalization of Microcantilever Arrays 437
 14.3.2 Read-Out of Microcantilever Arrays 439
14.4 Specificity and Sensitivity of Nanomechanical Biosensors 441
 14.4.1 A Statistical Approach to Achieve Highly Sensitive and Specific End-Point Detection of Immunoreactions by Nanomechanical Biosensors 441
 14.4.1.1 Choosing the best blocking strategy 442
 14.4.1.2 The influence of antibody surface density on the specificity of nanomechanical biosensors 443
 14.4.1.3 Reliability of the nanomechanical biosensors and development of a quality control test 446
 14.4.2 Receiving Operating Characteristics Analysis 448
14.5 Conclusions 451
15. **Nanocantilever Beams as Biological Sensors** 457

 Ankit Jain and Muhammad Ashraful Alam

 15.1 Introduction 457
 15.2 Cantilever-Based Sensors as Spring Mass System 460
 15.3 Classical Linear Biosensors 461
 15.3.1 Resonant Mode Mass Sensors 461
 15.3.2 Stress-Based Static Mode Sensors 463
 15.4 Emerging Nonlinear Biosensors 465
 15.4.1 Bifurcation-Based Mass Sensors 465
 15.4.2 Electromechanical Coupling-Based Flexure-FET Biosensors 467
 15.5 Conclusions 472

16. **Micro/Nano-Mechanical Cantilevers for Cancer Diagnosis** 477

 Kilho Eom and Taeyun Kwon

 16.1 Introduction 477
 16.2 Physical Principles 480
 16.2.1 Continuum Mechanics: Bending Deflection 481
 16.2.2 Continuum Mechanics Theory: Resonant Frequency 483
 16.2.2.1 Theoretical models 483
 16.2.2.2 Effect of mechanical tension 488
 16.2.2.3 Effect of hydrodynamic force 489
 16.2.3 Detection Principles 491
 16.2.3.1 Mass effect 492
 16.2.3.2 Surface stress effect 494
 16.2.3.3 Stiffness effect 496
 16.2.4 Langmuir Kinetic Model 498
 16.3 Cantilever-Based Label-Free Detection 500
 16.3.1 DNA/RNA Detection 500
 16.3.2 Protein Detection 502
 16.3.3 Detection of Enzymatic Activity 505