Nil Bohr-Sets and Almost Automorphy of Higher Order

Wen Huang
Song Shao
Xiangdong Ye
Contents

Chapter 1. Introduction 1
 1.1. Higher order Bohr problem 1
 1.2. Higher order almost automorphy 4
 1.3. Further questions 9
 1.4. Organization of the paper 10

Chapter 2. Preliminaries 11
 2.1. Basic notions 11
 2.2. Bergelson-Host-Kra's Theorem and the proof of Theorem A(2) 12
 2.3. Equivalence of Problems B-I,II,III 13

Chapter 3. Nilsystems 17
 3.1. Nilmanifolds and nilsystems 17
 3.2. Nilpotent Matrix Lie Group 19

Chapter 4. Generalized polynomials 21
 4.1. Definitions 21
 4.2. Basic properties of generalized polynomials 22

Chapter 5. Nil Bohr$_0$-sets and generalized polynomials: Proof of Theorem B 27
 5.1. Proof of Theorem B(1) 27
 5.2. Proof of Theorem B(2) 32

Chapter 6. Generalized polynomials and recurrence sets: Proof of Theorem C 43
 6.1. A special case and preparation 43
 6.2. Proof of Theorem C 46

Chapter 7. Recurrence sets and regionally proximal relation of order d 55
 7.1. Regionally proximal relation of order d 55
 7.2. Nil$_d$ Bohr$_0$-sets, Poincaré sets and $\mathbf{RP}^{[d]}$ 56
 7.3. SG_d-sets and $\mathbf{RP}^{[d]}$ 60
 7.4. Cubic version of multiple recurrence sets and $\mathbf{RP}^{[d]}$ 64
 7.5. Conclusion 69

Chapter 8. d-step almost automorphy and recurrence sets 71
 8.1. Definition of d-step almost automorphy 71
 8.2. Characterization of d-step almost automorphy 72

Appendix A 75
 A.1. The Ramsey properties 75
 A.2. Compact Hausdorff systems 76
A.3. Interective

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>78</td>
</tr>
<tr>
<td>Index</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>