3 Design Challenges 53
 3.1 Complexity 53
 3.2 Changes 55
 3.3 Dependencies 56
 3.4 Duplicate Information 57
 3.5 Technical Debt 58
 3.6 Your Wetware 60
 3.6.1 Recognition versus Recall 61

4 Design Principles 63
 4.1 Modularity 63
 4.1.1 What Is a Module? 63
 4.1.2 Key Benefits of Modularity 64
 4.1.3 Effectively Decomposing a System into Modules 65
 4.2 Abstraction 69
 4.2.1 Levels of Abstraction 69
 4.2.2 Key Benefits of Abstraction 71
 4.2.3 Using Abstraction Effectively 72
 4.3 Hierarchy 74
 4.3.1 Key Benefits of Hierarchy 75
 4.4 Loose Coupling 78
 4.4.1 Types of Coupling 79
 4.4.2 Decoupling 80
 4.5 Strong Cohesion 81
 4.6 The Single Responsibility Principle 83
 4.7 Orthogonality 84
 4.7.1 Guidelines for Creating Orthogonal Systems 85
 4.8 Single Source of Truth (The DRY Principle) 86

Part II Basic Elements of VHDL 89

5 Analysis, Elaboration, and Execution 91
 5.1 VHDL in the System Design Flow 91
 5.2 The Design Processing Flow 93
 5.3 Overview of the Analysis and Elaboration Process 96
 5.4 Detailed View of the Analysis Phase 98
 5.4.1 Lexical Analysis 98
 5.4.2 Lexical Elements 99
 5.4.3 Syntax Analysis 101
 5.4.4 Semantic Analysis 103
 5.5 Detailed View of the Elaboration Phase 104
5.6 The Execution Phase 107
 5.6.1 Discrete-Event Simulation 107
 5.6.2 Drivers 108
 5.6.3 Initialization Phase 111
 5.6.4 The Simulation Cycle 111

6 VHDL Design Units 113
 6.1 Design Units 113
 6.1.1 Entity Declaration 114
 6.1.2 Architecture Body 118
 6.1.3 Package Declaration and Package Body 119
 6.2 Design Libraries and Library Units 121
 6.3 Guidelines and Recommendations for VHDL Design Units 123

7 Statements, Declarations, and Expressions 129
 7.1 Statements 129
 7.2 Declarations 132
 7.2.1 Scope 132
 7.2.2 Visibility 133
 7.2.3 Overloading 134
 7.2.4 Scope, Visibility, and Overloading 136
 7.2.5 Use Clauses 136
 7.2.6 Live Time and Span 139
 7.3 Expressions 140
 7.4 Guidelines and Recommendations for Statements, Declarations, and Expressions 142

8 Operators, Operands, and Attributes 147
 8.1 Operators 147
 8.1.1 Condition Operator (??) 149
 8.1.2 Logical Operators 150
 8.1.3 Relational Operators 152
 8.1.4 Shift Operators 154
 8.1.5 Adding Operators 154
 8.1.6 Operator Overloading 156
 8.2 Operands 158
 8.2.1 Literals 159
 8.2.2 Aggregates 161
 8.2.3 Names 165
 8.2.4 Aliases 168
 8.2.5 Other Kinds of Operands 171
8.3 Attributes 172
8.4 Guidelines and Recommendations for Operators, Operands, and Attributes 180

Part III Statements 185

9 Concurrent Statements 187
9.1 Introduction 187
9.2 The process Statement 188
 9.2.1 The Ins and Outs of VHDL Processes 189
 9.2.2 The Sensitivity List 192
 9.2.3 Equivalence between Processes and Other Concurrent Statements 198
 9.2.4 Guidelines and Recommendations for Writing Processes 201
9.3 The Concurrent Procedure Call Statement 203
9.4 The Component Instantiation Statement 205
9.5 The generate Statement 209
 9.5.1 General Remarks about generate Statements 216
9.6 Other Concurrent Statements 217
 9.6.1 The block Statement 217
 9.6.2 The Concurrent Signal Assignment Statement 220
 9.6.3 The Concurrent Assertion Statement 221

10 Sequential Statements 223
10.1 Control Structures 223
 10.1.1 The Problems with Deep Nesting 224
10.2 The if Statement 224
 10.2.1 Guidelines for the if Statement 225
10.3 The case Statement 230
 10.3.1 Guidelines for the case Statement 232
10.4 Loops 234
 10.4.1 Kinds of Loops 234
 10.4.2 Auxiliary Loop Control Statements 236
 10.4.3 Loops in Hardware 238
 10.4.4 Guidelines for Using Loops 242
10.5 The wait Statement 246
 10.5.1 Synthesizable wait Statements 250
10.6 The assert Statement 251
 10.6.1 When to Use an Assertion 251
 10.6.2 When Not to Use an Assertion 253
 10.6.3 Severity Levels 253
10.7 The null Statement 253
19.5 Initialization and Reset 516
19.6 Pragmas 518
 19.6.1 Synthesis Attributes 518
 19.6.2 Metacomments 521
20 Testbenches 523
20.1 Introduction 523
 20.1.1 Test or Verification? 525
 20.1.2 Functional Verification 525
 20.1.3 What Should We Test? 525
 20.1.4 Self-Checking Testbenches 527
 20.1.5 Basic Parts of a Testbench 527
 20.1.6 What is the Output of a Testbench? 528
 20.1.7 Test-Driven Development 528
20.2 Example #1: Testbench for a Combinational Circuit 530
20.3 Example #2: Testbench for a Clocked Circuit 541
20.4 Example #3: Testbench for an FSM 547
20.5 Example #4: Testbenches with File I/O 555
20.6 Random Stimulus and Functional Coverage 559
 20.6.1 Functional Coverage 559
 20.6.2 Directed Testing 559
 20.6.3 Random-Based Verification 559
 20.6.4 Intelligent Coverage 559
 20.6.5 Coverage Bins 560
 20.6.6 VHDL and Random-Based Verification 560
20.7 Example #5: Testbench with Random Stimulus and Functional Coverage 561
20.8 Example #6: FSM Transition Coverage 566
20.9 Conclusion 572

Notes 575
Bibliography 583
Index 585