Trends in Digital Signal Processing
A Festschrift in Honour of A. G. Constantinides

edited by
Yong Ching Lim
Hon Keung Kwan
Wan-Chi Siu
Contents

Foreword xxi

Part I Introduction

1 Introduction 3
Yong Ching Lim, Hon Keung Kwan, and Wan-Chi Siu

Part II Digital Filters and Transforms

2 A Review on Time-Interleaved Analog-to-Digital Converters and Mismatch Compensation Techniques 13
Saihua Xu and Yong Ching Lim
2.1 Introduction 14
2.2 TIADC Architecture 15
 2.2.1 Ideal ADC 15
 2.2.2 Ideal TIADC 17
2.3 Sources of Mismatch Errors and Their Effects 18
 2.3.1 Offset Mismatches 19
 2.3.2 Gain Mismatches 19
 2.3.3 Timing Mismatches 20
 2.3.4 Frequency Response Mismatches 21
 2.3.5 Effect of the Mismatches in the frequency domain 22
2.4 Mismatch Estimation and Compensation 27
 2.4.1 Identification and Correction of Offset Mismatch 28
 2.4.2 Identification and Correction of Gain Mismatch 31
 2.4.3 Identification and Correction of Timing Mismatch 33
 2.4.3.1 Correction of timing mismatch 34
3 How to Perform Very Wideband Digital Filtering in Modern Software Defined Radios
Fred Harris, Elettra Venosa, and Xiaofei Chen

3.1 Introduction

3.2 NMDFBs Model
 3.2.1 Non-Maximally Decimated Filter Banks and Perfect Reconstruction Property
 3.2.2 Low-Pass Prototype Filter Design

3.3 PR Property

3.4 Practical Implementation of PR-NMDFBs
 3.4.1 Polyphase Analysis Channelizer
 3.4.2 Polyphase Synthesis Channelizer

3.5 Spectral Shaping Approximation via Intermediate Processing Elements
 3.5.1 Piecewise Constant Spectral Approximation
 3.5.2 Straight Line Spectral Approximation

3.6 Design Options
 3.6.1 Rectangular Low-Pass Prototype Filter Design
 3.6.2 Triangular Low-Pass Prototype Filter Design

3.7 Application Example

3.8 Conclusions

4 A Survey of Digital All-Pass Filter-Based Real and Complex Adaptive Notch Filters
P. T. Wheeler, J. A. Chambers, and P. A. Regalia

4.1 Introduction

4.2 Evaluation of Four Adaptive Notch Filters
 4.2.1 Synthesising the Four Structures
 4.2.1.1 Chambers and Constantinides’ NFB all-pass structure
 4.2.1.2 Regalia’s all-pass solution
 4.2.1.3 Cho, Choi and Lee’s all-pass method
 4.2.1.4 Kwan and Martin’s DCS solution
 4.2.2 Tracking Two Real Sinusoid Signals
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3 Tracking Three Real Sinusoid Signals</td>
<td>118</td>
</tr>
<tr>
<td>4.2.4 Summary</td>
<td>120</td>
</tr>
<tr>
<td>4.3 Evaluating the Two Complex Adaptive Notch Filters</td>
<td>121</td>
</tr>
<tr>
<td>4.3.1 Filter Realisation</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2 The Learning Algorithm</td>
<td>123</td>
</tr>
<tr>
<td>4.3.3 Tracking Two Complex Sinusoid Signals</td>
<td>124</td>
</tr>
<tr>
<td>4.3.4 Simulation Results and Comparison</td>
<td>125</td>
</tr>
<tr>
<td>4.3.5 Summary</td>
<td>128</td>
</tr>
<tr>
<td>4.4 Tracking a Complex-Valued Chirp Signal</td>
<td>128</td>
</tr>
<tr>
<td>4.4.1 Convergence of the Update of the Frequency Parameters</td>
<td>128</td>
</tr>
<tr>
<td>4.4.2 Comparison of Two Methods for Tracking a CVCS</td>
<td>130</td>
</tr>
<tr>
<td>4.4.3 Summary</td>
<td>132</td>
</tr>
<tr>
<td>4.5 Bandwidth Parameter Adaptation in a Complex Adaptive Notch Filter</td>
<td>132</td>
</tr>
<tr>
<td>4.5.1 The Full Gradient Term for the Update of α</td>
<td>134</td>
</tr>
<tr>
<td>4.5.2 Simulations and Results</td>
<td>135</td>
</tr>
<tr>
<td>4.5.2.1 Tracking a single CSS whilst also updating α</td>
<td>136</td>
</tr>
<tr>
<td>4.5.2.2 Tracking two CSSs, whilst adapting individual α values for each CSS being tracked</td>
<td>137</td>
</tr>
<tr>
<td>4.5.2.3 Tracking a CVCS and a frequency hopping CSS</td>
<td>138</td>
</tr>
<tr>
<td>4.5.3 Computational Complexity of the Algorithms used to Track CSSs</td>
<td>139</td>
</tr>
<tr>
<td>4.5.4 Summary</td>
<td>140</td>
</tr>
<tr>
<td>4.6 Overall Conclusions</td>
<td>141</td>
</tr>
<tr>
<td>5 Recent Advances in Sparse FIR Filter Design Using l_0 and l_1 Optimization Techniques</td>
<td>145</td>
</tr>
<tr>
<td>Aimin Jiang and Hon Keung Kwan</td>
<td></td>
</tr>
<tr>
<td>5.1 Classical FIR Filter Designs</td>
<td>146</td>
</tr>
<tr>
<td>5.2 Sparse FIR Filter Designs</td>
<td>148</td>
</tr>
<tr>
<td>5.2.1 Hard Thresholding Method</td>
<td>152</td>
</tr>
<tr>
<td>5.2.2 Minimum 1-Norm Method</td>
<td>153</td>
</tr>
<tr>
<td>5.2.3 Successive Thinning Method</td>
<td>154</td>
</tr>
</tbody>
</table>
5.2.4 Iterative Shrinkage/Thresholding (IST) Method
5.2.5 Joint Optimization of Coefficient Sparsity and Filter Order
5.3 Summary

6 Sparse Models in Echo Cancellation: When the Old Meets the New
Yannis Kopsinis, Symeon Chouvardas, and Sergios Theodoridis
6.1 Introduction
6.2 Sparse Adaptive Filtering: The Proportionate Updating Approach
6.3 Sparse Adaptive Filtering: Sparsity-Induced Regularization/Thresholding Approach
6.4 Adaptive Sparsity Promotion: A Geometrical Point of View
6.5 Sparse Adaptive Filtering: Set Theoretic Approach
6.5.1 Adaptive Thresholding
6.6 Robust Online Learning: The Double-Talk Scenario
6.7 Experimental Validation

7 Transform Domain Processing for Recent Signal and Video Applications
Wan-Chi Siu
7.1 Introduction
7.1.1 DSP Operation Basis: Cyclic Convolutions and Discrete Fourier Transforms
7.1.2 Number Theoretic Transforms
7.2 Theory of a General Transform
7.2.1 Circular Convolution Property
7.3 Transform in a Ring of Integers Modulo an Integer, M
7.3.1 Mersenne Number and Fermat Number Transforms
7.4 Very Fast Discrete Fourier Transform Using Number Theoretic Transform
7.5 Discrete Cosine Transform
7.5.1 Length-4 DCT 227
7.5.2 Inverse DCT 228

7.6 Integer Cosine Transform 231
7.6.1 Length-4 DCT Again 231
7.6.2 Orthogonal Requirement for Length-4 DCT 233
7.6.3 New Integer Cosine Kernels 235

7.7 Application to Interpolation and Super-Resolution Videos/Images 239
7.7.1 Interpolation 239
7.7.2 Methodology 240
7.7.3 Video Up-Sampling with the Transform Domain 240

7.8 Conclusion 248

PART III SIGNAL PROCESSING

8 Ramanujan-Sums and the Representation of Periodic Sequences 261
Palghat P. Vaidyanathan
8.1 Introduction 261
8.1.1 Notations 263
8.2 Periodic Signals and DFT 264
8.3 Ramanujan Sums 266
8.4 Ramanujan Subspaces 270
8.4.1 Properties of Ramanujan subspaces 272
8.5 A Second Ramanujan Sum Basis Using Subspaces \(S_q\) 273
8.5.1 Properties of the Representation 274
8.5.2 Finding Period Using Decomposition 275
8.5.3 Justification of the Representation 276
8.6 Examples of Use of Ramanujan Representations 277
8.7 Dictionary Approaches 280
8.8 Concluding Remarks 283

9 High-Dimensional Kernel Regression: A Guide for Practitioners 287
Felipe Tobar and Danilo P. Mandic
9.1 Introduction 287
9.2 Background on Kernel Estimation 289
9.2.1 Support Vector Regression 289
9.2.2 Sparsification Criteria 291
9.2.3 Finding the Optimal Mixing Parameters: Ridge Regression and Least Mean Square 292
9.3 Complex-Valued Kernels 294
 9.3.1 Complexification of Real-Valued Kernels 294
 9.3.2 Online Wind Prediction Using Complex-Valued Kernels 296
9.4 Quaternion-Valued Kernels 298
 9.4.1 Quaternion Reproducing Kernel Hilbert Spaces 299
 9.4.2 Body Motion Tracking Using Quaternion Kernels 300
9.5 Vector-Valued Kernels 302
 9.5.1 A Vector-Valued Reproducing Kernel Hilbert Space 303
 9.5.2 Nonlinear Function Approximation Using Multikernel Ridge Regression 305
9.6 Discussion 307

10 Linear Microphone Array TDE via Generalized Gaussian Distribution 311
 Theodoros Petsatodis and Fotios Talantzis
 10.1 Introduction 311
 10.2 System Model Description 313
 10.3 Information Theoretical Time Delay Estimation 318
 10.3.1 Mutual Information-Based TDE 318
 10.4 Employing Generalized Gaussian Distribution 322
 10.5 Conclusions 328

11 Recognition of Human Faces under Different Degradation Conditions 333
 Soodeh Nikan and Majid Ahmadi
 11.1 Introduction 333
 11.2 Illumination Variation Challenge 334
 11.2.1 Illumination-Insensitive Image Processing 335
 11.2.1.1 Intensity-level transformation 335
 11.2.1.2 Gradient-based techniques 336
 11.2.1.3 Reflection component estimation 337
 11.2.2 Illumination-Invariant Image Descriptor 339
11.2.3 Block-Based Illumination-Invariant Pattern Recognition 340
11.3 Partial Occlusion Challenges 343
11.3.1 Excluding Occluded Face Regions or Reducing Their Effect 345
11.4 Conclusion 352

12 Semantic Representation, Enrichment, and Retrieval of Audiovisual Film Content 357
Alexandros Chortaras, Stefanos Kollias, Kostas Rapantzikos, and Giorgos Stamou

12.1 Introduction 357
12.2 Film Data Description 361
12.2.1 Metadata 361
12.2.2 Scripts and Post-Production Scripts 362
12.3 Knowledge-Based Representation of Data 365
12.3.1 Semantic Technologies 365
12.3.2 Overview of the Semantic Representation 369
12.3.3 Film Ontologies and Metadata Representation 371
12.3.4 Video Content Representation 372
12.3.5 Script Representation 373
12.4 Visual Analysis 377
12.4.1 The Analysis Subsystem 377
12.4.2 The Main Components 378
12.4.2.1 Local visual characteristics and descriptors 378
12.4.2.2 Quantization and codebook 379
12.4.2.3 Visual matching and geometry 379
12.4.3 The Visual Analysis Scheme 380
12.4.3.1 Constructing visual dictionaries 381
12.4.3.2 Geometry consistency checking 382
12.4.3.3 Feature selection 383
12.4.3.4 Geo-location exploitation 384
12.4.3.5 Feature extraction 384
12.5 Film Metadata and Content Enrichment 385
12.5.1 Using IMDb Data 385
12.5.2 Named Entity Recognition 388
12.5.3 Linking to WordNet 390
12.5.4 Visual Analysis Results 393
12.6 Query Answering 394
 12.6.1 Query Rewriting 395
 12.6.2 Evaluation 396
12.7 Conclusions 400

13 Modeling the Structures of Complex Systems: Data Representations, Neural Learning, and Artificial Mind 407
 Tetsuya Hoya
13.1 Introduction 408
13.2 Holistic Representation of Complex Data Structures—by Way of Graph Theoretic Methods 411
 13.2.1 Edge Detection of an Image 411
 13.2.2 Pruning the Dataset Used for Training Neural Networks 412
13.3 Incremental Training Using a Probabilistic Neural Network 414
 13.3.1 A Pattern Correction Scheme Using a PNN 415
 13.3.2 Accommodation of New Classes within a PNN 416
13.4 The Concept of Kernel Memory 416
 13.4.1 Simultaneous Pattern Classification and Association by Kernel Memory 420
 13.4.2 Temporal Data Processing by Way of Kernel Memory 421
 13.4.3 Application of Kernel Units for Detecting Sequential Patterns to Spoken Word Recognition 421
13.5 Artificial Mind System: Toward Drawing a Blueprint of Artificial Intelligence 423
 13.5.1 A Hierarchical Network Model of Short- and Long-Term Memory, Attention, and Intuition 424
 13.5.2 The Artificial Mind System 426
 13.5.3 Ongoing Research Activities Relevant to the Artificial Mind System 428
13.6 Conclusion 429
PART IV COMMUNICATIONS

14 Markov Chain Monte Carlo Statistical Detection Methods for Communication Systems 435
Behrouz Farhang-Boroujeny

14.1 Introduction 435
14.2 Channel Model 437
14.3 Iterative Multiuser/MIMO Receiver 437
14.4 Monte Carlo Statistical Methods 439
 14.4.1 Monte Carlo Integration 439
 14.4.2 Importance Sampling 440
 14.4.3 Connection with LLR Computation 441
 14.4.4 MCMC Simulation and Gibbs Sampler 441
 14.4.5 Symbol-wise and Bit-wise Gibbs Samplers 442
14.5 Implementation of Multiuser/MIMO Detector 442
 14.5.1 Monte Carlo Summations 443
 14.5.2 Computation of L-Values 444
 14.5.3 Statistical Inference 446
 14.5.4 Max-log Approximation 447
 14.5.5 Discussion 447
14.6 Implementation of MCMC Detector 448
 14.6.1 Reformulation of the Channel Model 449
 14.6.2 Bit-wise Gibbs Sampler 449
 14.6.3 L-Values Calculator 452
 14.6.4 Hardware Architectures 453

15 Multiple Antennas for Physical Layer Secrecy 461
Jiangyuan Li and Athina P. Petropulu

15.1 Physical Layer Secrecy 461
15.2 Secrecy Capacity Concept of the Wiretap Channel 463
15.3 Secrecy Capacity of MIMO Wiretap Channels 465
 15.3.1 Conditions for Positive Secrecy Capacity, Convexity, and Solution 466
 15.3.2 MISO Wiretap Channels 468
 15.3.3 Single-Antenna Eavesdropper 469
16 Radio Frequency Localization for IoT Applications
Antonis Kalis and Anastasis Kounoudes
16.1 Indoor Localization Challenges and Applications 481
16.2 Basic Measurement-Based Methods 483
 16.2.1 Time-of-Flight Measuring Methods 485
 16.2.2 Received Signal Strength-Based Measurements 489
16.3 The Special Case of Wireless Sensor Networks 492
16.4 Smart Antennas for WSN 496
 16.4.1 Direction Finding 498
 16.4.2 Localization 500
16.5 Summary 505

17 Classification and Prediction Techniques for Localization in IEEE 802.11 Networks
Kelong Cong and Kin K. Leung
17.1 Introduction 510
17.2 Background 511
 17.2.1 Path-Loss and Log-Normal Shadowing 511
 17.2.2 Location Estimation: Fingerprinting 512
 17.2.3 Machine Learning 514
 17.2.4 Existing Work 514
 17.2.4.1 RADAR and Horus 514
 17.2.4.2 COMPASS 515
 17.2.4.3 Ekahau 515
17.3 Methodology 515
 17.3.1 Simulated Data Generation 516
 17.3.2 Experimental Testbed 517
 17.3.3 Data Collection and Processing 518
 17.3.4 Classification Algorithms 518
17.3.4.1 Input data 518
17.3.4.2 Algorithms and their implementation 519

17.4 Results 520
17.4.1 Analysis on Simulated Data 520
17.4.1.1 Analysis on the number of measurements per fingerprinted location used in the training phase 520
17.4.1.2 Analysis on the number of measurements used to perform a single prediction 522
17.4.2 Analysis on Real Data 524
17.4.2.1 Analysis on the number of measurements per fingerprinted location used in the training phase 524
17.4.2.2 Monitor subset analysis using confusion matrix 526

17.5 Conclusion 528

PART V FINALE

18 Our World Is Better Served by DSP Technologies and Their Innovative Solutions 535
Paulina Chan
18.1 Synopsis 535
18.2 DSP Offers Solutions to Societal Needs and Sets Technology Trends 536
18.3 Area 1: Universal and Personalised Healthcare 538
18.3.1 The Synergy of Engineering and I-Healthcare in Global Healthcare Innovation 540
18.3.2 Big Data for I-Care Systems 540
18.3.3 I-Training and Education 541
18.3.4 Apply Omics Science to Clinical Applications 542
18.4 Area 2: Internet of Data/Things/People in Communications
 18.4.1 DSP in ICT Industry 543
 18.4.2 Making the Digital Economy Smarter 544
 18.4.2.1 Fifth-Generation Mobile Networks and Systems 544
 18.4.2.2 Internet of Things 545
 18.4.2.3 Internet of Big Data and Cloud Computing 545
 18.4.2.4 Internet of People and Online Gaming 547

18.5 Area 3: Smart City Applications and Sustainable Ecology
 18.5.1 Smart Grids 549
 18.5.2 Modelling Some Smart Applications in Smart Cities in the USA and at Imperial College London 550
 18.5.2.1 A Wireless Mesh Network to monitor Traffic 551
 18.5.2.2 The All Traffic Solutions 551
 18.5.2.3 A High-Performance Building Programme 552
 18.5.2.4 At Imperial College London 553

18.6 Area 4: Green Technologies and Renewable Energy
 18.6.1 Multidisciplinary Teams at Imperial College London on Green 554
 18.6.1.1 Wind Turbine Industry Analysis at the Business School 555
 18.6.1.2 The Energy Futures Lab at the Engineering Faculty 556
 18.6.2 Green Architecture in the UK 557
 18.6.3 Green Mobility in the USA 558
 18.6.4 Solar Farms and Solar Grids
 18.6.4.1 Sahara Desert: The Source of Solar Energy 559
18.6.4.2 Manufacturing Solar Panels in China 560
18.6.5 Waste Water to Electricity Generation 561
18.7 A Path from R&D to Product and Service Releases for DSP 562

Closing Remarks 567
Lajos Hanzo

Index 571