Contents

List of Contributors xvii
Preface xix
Biographies xxiii
Acknowledgments xxv

Section I
Fouling and Scaling Fundamentals

1. Water-Formed Scales and Deposits:
Types, Characteristics, and Relevant Industries 3
Jitka MacAdam and Peter Jarvis

1.1. Introduction 3
1.1.1. Background 3
1.1.2. Main Factors Affecting Scale Formation 3
1.1.3. Main Industries Affected 5
1.2. Calcium Carbonate 9
1.2.1. Background and Chemistry of Calcium Carbonate 9
1.2.2. Factors and Conditions Affecting the Formation of Calcium Carbonate 12
1.2.3. Relevant Industries 13
1.3. Calcium and Barium Sulfates 13
1.3.1. Background 13
1.3.2. Factors and Conditions Affecting the Formation of Calcium Sulfate 13
1.3.3. Relevant Industries 14
1.3.4. Barium Sulfate 14
1.4. Magnesium-Based Scales 15
1.4.1. Background 15
1.4.2. Factors and Conditions Affecting the Formation of Magnesium Scales 15
1.4.3. Relevant Industries 16
1.5. Silica Scales 16
1.5.1. Background 16
1.5.2. Factors and Conditions Affecting the Formation of Silica Scales 16
1.5.3. Relevant Industries 17
1.6. Examples of Other Scales 17
1.6.1. Iron Scales 17
1.6.2. Struvite and Calcium Phosphate 18
1.6.3. Lead-Based Scale 20
1.7. Summary 20
References 21

2. Water Chemistry and Its Role in Industrial Water Systems 25
Petros G. Koutsoukos

2.1. Water as the Universal Solvent 25
2.2. Thermodynamics of Solubility 26
2.3. Dissolved, Scale-Forming Cations and Anions 29
2.4. The Formation of Ion Pairs 31
2.5. Suspended Solids and Their Effect on Deposit Formation 32
2.6. The Nucleation Process 34
2.7. Factors that Affect Crystal Growth 36
2.8. Scale Deposition and Adhesion 41
2.9. Concluding Remarks 44
Acknowledgment 44
References 44

3. Mechanisms of Scale Formation and Inhibition 47
Tung A. Hoang

3.1. Scale: Definition and Influence on Industrial Processes 47
3.1.1. What Is Scale? 47
3.1.2. Influence of Scaling on Industrial Processes 47
3.2. Theoretical Background of Scaling 48
3.2.1. Solid Crystals 48
3.2.2. Supersaturated Solution 49
3.2.3. Scaling Process 50
3.2.4. Mechanism of Scale Formation 51
3.3. Scaling in Flow Systems 56
3.4. Factors Affecting the Nucleation Rates 57
3.4.1. Supersaturation 57
3.4.2. Contact Time 58
3.4.3. Hydrodynamic Factors 59
3.4.4. Surface Roughness and Materials 60
3.4.5. Temperature 61
7.7. Heat Exchanger Type, Geometry and Process Fluid Influencing Fouling 152
7.8. Fouling Models 152
7.9. Cost Imposed due to Fouling 153
7.10. Fouling Mitigation 154
  7.10.1. Use of Additives in Fouling Mitigation 155
  7.10.2. Mitigation of Fouling by Other Methods 160
  7.10.3. Fouling Mitigation on Different Heat Exchanging Surfaces 162
7.11. Summary 163
  Nomenclature 163
  References 164

8. Water Treatment Chemicals: Types, Solution Chemistry, and Applications 169
Radisav D. Vidic, Wenshi Liu, Heng Li and Can He

8.1. Introduction 169
8.2. Role of Antiscalants 169
  8.2.1. Effect of Antiscalants on Mineral Precipitation 169
  8.2.2. Effect of Antiscalants on Mineral Deposition 172
8.3. Antiscalant Selection 172
  8.3.1. Static Beaker Test 173
  8.3.2. Water Recirculating System 173
  8.3.3. Water Recirculating System with Heated Surface 174
  8.3.4. Electrochemical Impedance Spectroscopy 175
  8.3.5. Dynamic Tube-Blocking Test 176
8.4. Scale Formation and Growth 176
  8.4.1. Nucleation 176
  8.4.2. Inhibition of Nucleation 179
  8.4.3. Inhibition of Scale Growth 179
  8.4.4. Inhibition of Particulate Fouling 181
8.5. Case Studies 183
  8.5.1. Cooling Towers: Mineral Scaling Mitigation in Cooling Systems Using Secondary-Treated MWW 183
  8.5.2. Oil and Gas Industry: Inhibition of Barium Sulfate Scaling on the Production Casing during Unconventional Shale Gas Extraction 186
  8.5.3. Water Treatment: Scaling Control in RO Desalination 187
8.6. Summary 187
  Nomenclature 188
  References 189

9. Nonchemical Methods to Control Scale and Deposit Formation 193
Young I. Cho and Hyoung-Sup Kim

9.1. Introduction 193
9.2. Mechanism of PWT—Bulk Precipitation 193
9.3. Magnetic Water Treatment 196
9.4. Laboratory Tests 198
9.5. Field Tests 202
9.6. Water Treatment Using Solenoid Coils 206
9.7. Laboratory Tests 207
9.8. Field Tests 209
9.9. Water Treatment Using RF Electric Fields 212
9.10. Water Treatment Using High-Voltage Capacitor System 215
9.11. Validation Field Tests 216
9.13. Validation Studies 218
  Nomenclature 219
  References 219

10. New Product Development for Oil Field Application 223
Tao Chen, Ping Chen, Harry Montgomerie and Thomas Hagen

10.1. Introduction 223
  10.1.1. Scale Inhibitor Chemistry 225
10.2. Experiment Procedures 225
  10.2.1. Formation Water and Seawater Compatibility Tests 225
  10.2.2. Dynamic Loop Tests 226
  10.2.3. Dynamic Core Flood Tests 227
  10.2.4. Scale Inhibitor Return Analysis 228
10.3. Results and Discussion 228
  10.3.1. Formation Water and Seawater Compatibility Tests 228
  10.3.2. Dynamic Loop Tests 229
  10.3.3. Dynamic Core Flood Tests 231
  10.3.4. Development of Scale Inhibitors for Field Squeeze Application—Environmental Data 232
  10.3.5. Field Application—Scale Inhibitor SI-D in Well-A 233
  10.3.6. Field Application—Scale Inhibitor SI-E in Well-B 234
10.4. Summary 235
10.5. Conclusions 235
  Nomenclature 236
  References 237
11. Patent Review Related to Scale and Scale Inhibition 239

Zahid Amjad and Konstantinos D. Demadis

11.1. Introduction 239
Patent 1 239
Patent 2 240
Patent 3 242
Patent 4 242
Patent 5 242
Patent 6 243
Patent 7 243
Patent 8 244
Patent 9 246
Patent 10 246
Patent 11 247
Patent 12 247
Patent 13 252
Patent 14 252
Patent 15 253
Patent 16 253
Patent 17 254
Patent 18 254
Patent 19 257
Patent 20 257
Patent 21 258
Patent 22 258
Patent 23 261
Patent 24 261
Patent 25 263
Patent 26 263
Patent 27 263
Patent 28 264
Patent 29 264
Patent 30 264
Patent 31 265
Patent 32 265
Patent 33 266
Patent 34 266
Patent 35 268
Patent 36 269
Patent 37 269
Patent 38 271
Patent 39 272
Patent 40 273
Patent 41 273
Patent 42 273
Patent 43 274
Patent 44 278
Patent 45 284
Patent 46 287
Patent 47 288
Patent 48 288
Patent 49 289
Patent 50 290
Patent 51 290
Patent 52 291
Patent 53 293
Patent 54 293
Patent 55 295
Patent 56 297
Patent 57 300
Patent 58 301
Patent 59 301
Patent 60 301
Patent 61 304
Patent 62 304
Patent 63 304
Patent 64 305
Patent 65 309
Patent 66 310
Patent 67 312
Patent 68 313
Patent 69 314
Patent 70 315
Patent 71 315
Patent 72 315
Patent 73 315
Patent 74 316
Patent 75 316
Patent 76 318
Patent 77 318
Patent 78 319

Acknowledgment 319

Section II

Biological, Environmental and Home Care

12. Scaling Problems in Home Care Applications 323

Somil Mehta, Jan Shulman and Alain Dufour

12.1. Introduction 323
12.2. Fundamentals of Scaling 323
12.2.1. Introduction to Scale/Deposit 323
12.2.2. Basics of Water Chemistry 325
12.2.3. Type of Scales 327
12.3. Methods for Avoiding Scale Formation 328
12.3.1. Inorganic Builders 329
12.3.2. Organic Builders 329
12.3.3. Polymeric (Co-)Builders 333
12.3.4. Ion Exchange 334
12.3.5. Precipitation 334
12.4. Examples of Scaling and Control in Home Care Applications

12.4.1. Laundry (Automatic and Hand Laundry) 334
12.4.2. Dishwashing (Automatic and Hand Dish) 337
12.4.3. Hard Surface Care 342
12.4.4. Industrial and Institutional Cleaners 344

12.5. Recent Trends in Environmental Considerations 350

12.6. Summary 351
References 351

13. Tartar and Plaque Control 353

Kosuke Nozaki, Noriko Ebe, Kimihiro Yamashita and Akiko Nagai

13.1. Oral Cavity 353
13.1.1. Tooth 353
13.1.2. Periodontium 353

13.2. Dental Plaque 353
13.2.1. Composition 354
13.2.2. Structure 355
13.2.3. Dental Plaque Formation 355
13.2.4. Resistance to Antimicrobial Agents 356

13.3. Dental Calculus 357
13.3.1. Distribution 357
13.3.2. Composition 358
13.3.3. Structure 361
13.3.4. Mineralization Mechanism 361

13.4. Plaque Control 363
13.4.1. Significance of Plaque and Calculus for the Disease Process 363
13.4.2. Supragingival Plaque Control 363
13.4.3. Calculus Prevention 365
13.4.4. Calculus Removal Methods and Their Efficacy 366

13.5. Summary 369
References 369

14. Calcium Pyrophosphate Dihydrate Deposition Disease 373

Orestis L. Katsamanis and Nikolaos Bouropoulos

14.1. Physiological and Pathological Mineralization in the Human Body 373

14.2. The Nature and Composition of CPPD 375
14.2.1. Calcium Phosphates and Pyrophosphates 375
14.2.2. Crystal Structure of CPPD 375

14.3. Mechanism of CPPD Calcification 375
14.3.1. Generation and Supersaturation of Inorganic Pyrophosphate in the Human Body 375
14.3.2. Nucleation and Growth of CPPD Crystals 378

14.4. Pathological Deposition of CPPD in the Human Body 378
14.4.1. Historical Note 378
14.4.2. Nomenclature 379
14.4.3. Clinical Manifestation, Morphology, and Anatomical Locations of CPPD Crystal Deposits 379
14.4.4. Coexistence with Other Pathologies 380
14.4.5. Implications on the Mechanical Properties of the Tissue 381
14.4.6. Treatment and Management of CPP Crystal Deposition Disease 384

14.5. In vitro Synthesis and Characterization of CPPD Crystals 384
14.5.1. Synthesis of t- and m-CPPD Crystals 384
14.5.2. In vitro Dissolution and Growth Properties of CPPD Crystals 385
14.5.3. Characterization of t- and m-CPPD in Pathological Deposits 385
14.5.4. In vitro Model Systems for the Study of Pathological Cartilage Calcification 387
14.5.5. Inhibitors 387
Acknowledgments 388
References 388

15. Importance of Calcium-Based Scales in Kidney Stone 393

Mualla Öner, Aslam Khan and Saeed R. Khan

15.1. Introduction 393
15.2. Crystallization Kinetics 393
15.2.1. Supersaturation 393
15.2.2. Nucleation 396
15.2.3. Crystal Growth 397
15.2.4. Crystal Aggregation 398
15.2.5. Calcium Oxalate Crystals 398

15.3. Effect of Additives on Calcium Oxalate Crystallization, Results of In vitro Studies 400
Contents

15.4. Calcium Oxalate in Kidney Stones 402
  15.4.1. Prevalence and Economic Impact 402

15.5. Composition and Structure of Stones 402
  15.5.1. Stone Matrix 404

15.6. Crystallization Modulators 404
  15.6.1. Glycosaminoglycans 404
  15.6.2. Osteopontin 405
  15.6.3. Matrix Gla Protein 406
  15.6.4. Urinary Prothrombin Fragment-1 406
  15.6.5. Tamm—Horsfall Protein 406
  15.6.6. Inter-α-Inhibitor 407
  15.6.7. Lipids and Cellular Membranes 409

15.7. Concluding Remarks 410
Acknowledgment 410
References 410

16. Calcification of Biomaterials 417
  Stamatia Rokidi, Dimosthenis Mavrilas and Petros G. Koutsoukos

  16.1. Introduction: Implants—Problems of Their Functionality 417


  16.4. The Case of Calcium Phosphates 423

  16.5. Mineralization of Calcium Phosphates of Heart Valve Tissues 425

  16.6. Calcification of Biocements 430

  16.7. Encrustation of Catheters by Calcium Oxalates 438

  16.8. Conclusions 439

References 440

17. Removal of Toxic Materials from Aqueous Streams 443
  Anastasios I. Zouboulis, Efrosyni N. Peleka and Petros Samaras

  17.1. Introduction 443

  17.2. Toxic Materials 444
    17.2.1. Definitions 444
    17.2.2. Inorganic Substances 444
    17.2.3. Organic Substances 445

    17.2.4. Toxic Materials in Water 445
    17.2.5. Toxic Materials in Wastewater 446

  17.3. Removal Methods 446
    17.3.1. Chemical Precipitation 447
    17.3.2. Electrochemical Treatment 447
    17.3.3. Coagulation—Flocculation 449
    17.3.4. Floation 450
    17.3.5. Membrane Filtration 452
    17.3.6. Adsorption and Ion Exchange 453
    17.3.7. Catalytic Degradation 455
    17.3.8. Biological Degradation 458

  17.4. Disposal Issues 459
    17.4.1. Waste Minimization 459
    17.4.2. Recycling 461
    17.4.3. Degradation 462
    17.4.4. Stabilization/Solidification and Vitrification 463

  17.5. Selected Case Studies—Applications 463
    17.5.1. Management of Arsenic Minerals at the Yerranderie Mine Site 463
    17.5.2. New Media Reduces Copper and Zinc at Hydrocarbon Processing Facility 464
    17.5.3. Microfiltration System Reduces Waste by Two-Thirds 464

References 464

Section III
Scaling and Fouling Issues by Industry

18. Membrane-Based Desalination Processes: Challenges and Solutions 477
  Mark Wilf

  18.1. Introduction 477
  18.2. The RO Process 477
  18.3. Permeate Recovery Rate (Conversion Ratio) 478
  18.4. Net Driving Pressure 479
  18.5. Salt-Water Separation in RO Process 479
  18.6. Water Transport 480
  18.7. Salt Transport 480
  18.8. Salt Passage and Salt Rejection 481
  18.9. Temperature Effect on Transport Rate 481
  18.10. Average Permeate Flux 481
  18.11. Specific Water Permeability of a Membrane 482
  18.12. Commercial RO/Nanofiltration Membrane Technology 482
  18.13. CA Membranes 483
18.15. Membrane Module Configurations 484
18.16. Spiral Wound Elements 484
18.17. Spiral Wound Element Categories 486
18.18. RO System Configuration 488
18.19. Membrane Assembly Unit 489
18.20. Concentrate Staging 489
18.21. Permeate Staging (Two-Pass Systems) 490
18.22. Membrane Elements Fouling 492
18.22.1. Membrane Elements Fouling Process 492
18.23. Membrane Performance Restoration 493
18.23.1. Chemical Cleaning 493
18.23.2. Direct Osmosis Cleaning 495
18.24. Challenges and Potential for Improvement of the RO Process 495
18.24.1. Brackish Water Desalination 495
18.24.2. Seawater Desalination 495
18.24.3. Municipal Wastewater Reclamation 495
18.24.4. Membranes and Membrane Modules 496
18.24.5. Feed Water Quality and Membrane Pretreatment 496
References 496


Salvador Ávila Filho and José Rafael Nascimento Lopes

19.1. Context and Paradigms 499
19.1.1. Climate Change and Water Economy 499
19.1.2. Energy Integration in Production 500

19.2. Cooling Systems and Cooling Tower 501
19.2.1. Types of Cooling Systems of Thermal Fluids 501
19.2.2. Operation and Process of Cooling Systems 502

19.3. New Technologies and Projects 506
19.3.1. New Industrial Project and Energy 506
19.3.2. Automation and Process Control Projects 508
19.3.3. Research on Energy Management in the Cooling Tower 509
19.3.4. Management of Water Availability 509
19.3.5. Reuse and Quality of the Waste Water 512

19.4. Audit in Cooling Towers 513
19.4.1. Audit and Inspection in Industrial Plants 514
19.4.2. Data and Procedures 519
19.4.3. Mass and Energy Balance Calculations 522
19.4.4. Maintenance of Cooling Towers 523
19.4.5. Operational Routines and External Influences 524

19.5. Cooling System: Capability, Control and Performance 525
19.5.1. Effects of Losing Operation Control in Cooling Systems 525
19.5.2. Analyze the Current Project in Operation 527
19.5.3. Management, Maintenance and Operation 527

19.6. Guidelines for Control of Cooling Towers 528
19.6.1. Design Criteria 529
19.6.2. Interaction with Environment 529
19.6.3. Process Control, Water Balance (Cycles), and Thermal Distribution 529
19.6.4. Water Treatment and Corrosion 530
19.6.5. Maintenance and Operation of Cooling Systems (Structure/Materials) 530
19.6.6. Transfer of Heat and Mass (Water and Air) 530
19.6.7. Solution for Testing and Cooling System 530
19.6.8. Water Supply and Availability in Sources 530
19.6.9. Water Demand and Quality Sources and Necessities 530

Acknowledgments 531
References 531

20. Fouling in Dairy Processes 533

Trinh Khanh Tuoc

20.1. Introduction 533
20.1.1. Definition of Fouling 533
20.1.2. Importance of Fouling for the Industry 533
20.1.3. Chapter Organization 533

20.2. Mechanism of Fouling by Milk and Milk Components 534
20.2.1. Overarching Mechanism 534
20.2.2. Activation of Different Components of Milk 534
20.3. Composition, Types, and Structures of Fouling 536
  20.3.1. Types and Composition 536
  20.3.2. Occurrences in Different Manufacturing Processes 537
  20.3.3. Types and Structures 537

20.4. The Measurement of Fouling 538
  20.4.1. Mass Measurement 538
  20.4.2. In-line Measurements 538
  20.4.3. Stages of Thermal Fouling 539

20.5. Factors Affecting Fouling by Milk 540
  20.5.1. Milk Composition 541
  20.5.2. Seasonal Variation and Environment Factors 541
  20.5.3. Milk Quality 541
  20.5.4. Temperature 543
  20.5.5. Geometry and Flow Rate 543
  20.5.6. Surface Condition 544
  20.5.7. Dissolved Gases 545
  20.5.8. Pressure 546

20.6. Equipment Fouling in Milk Powder Plants 547
  20.6.1. The Milk Powder Process 547
  20.6.2. Location of Deposits by Type and Mechanism 548

20.7. How to Limit Fouling 550
  20.7.1. Start-up Procedure 550

20.8. Cleaning-in-Place 552
  20.8.1. CIP Protocol 552
  20.8.2. Factors Affecting CIP and Sanitation 554

20.9. Conclusions 554
  References 555

21. Scaling in Alkaline Spent Pulping Liquor Evaporators 557

Maria Cristina Area and Fernando Esteban Felissia

21.2. Types of Scale Deposits in Alkaline Spent Pulping Liquor Evaporators 559
21.3. Why Does Scale Form? 561
21.4. Mitigation Methods, Including Scale Inhibition 564
21.5. Modeling Fouling Processes and Case Studies 566
21.6. Conclusions 568
  References 568

22. Control of Silica-Based Scales in Cooling and Geothermal Systems 573

Darrell L. Gallup and Paul von Hirtz

22.1. Introduction 573
22.2. Thermodynamic and Kinetic Impacts on Geothermal Scale Deposition 574
22.3. Geothermal Scale Types and Formation Mechanisms 574
  22.3.1. Amorphous Silica 575
  22.3.2. Metal Silicates and Clays 577
  22.3.3. Carbonates 577
  22.3.4. Sulfides 577
  22.3.5. Sulfates 578
  22.3.6. Fluorite and Halite 578
  22.3.7. Corrosion Products 578
22.4. Control of Silica-Based Scales 578
  22.4.1. Hot Brine Injection 579
  22.4.2. Acidified Brine Injection 579
  22.4.3. Aging Brines 579
  22.4.4. Crystallizer Reactor Clarification 579
  22.4.5. Metal Salt Treatment 579
  22.4.6. Cationic Surfactant Treatment 579
  22.4.7. Brine Dilution 580
  22.4.8. Reducing Agents 580
  22.4.9. Organic Inhibitors and Dispersants 580
  22.4.10. Chelating Agents 580
  22.4.11. Caustic Soda Treatment 580
22.5. Review of Silica Inhibitors Tested 580
  References 581

23. Thermal Desalination: Current Challenges 583

Christopher M. Fellows and Ali Al-Hamzah

23.1. Introduction 583
23.2. Thermal Desalination Processes 584
23.3. Seawater Chemistry 585
23.4. Scale Characterization 586
23.5. Thermodynamics and Kinetics of Scale Formation 586
  23.5.1. Soft Scale—Calcium Carbonate and Magnesium Hydroxide 586
  23.5.2. Hard Scale—Calcium Sulfate and Magnesium Hydroxide 589
  23.5.3. Physical Factors in Kinetics 590
23.6. Control of Scale Formation 590
  23.6.1. Acid Treatment 591
  23.6.2. Electrolytic Treatment 591

References 568
23.6.3. Magnetic Treatment 591
23.6.4. Pre-Precipitation 591
23.6.5. Nanofiltration 592
23.6.6. Scale Inhibitors 592
23.6.7. Phosphates and Polyphosphates 594
23.6.8. Phosphonates and Polyphosphonates 594
23.6.9. Polymaleic Acid and Derivatives 596
23.6.10. Polycrylic Acid 596
23.6.11. Other Polycarboxylic Acids 597
23.6.12. Polysulfonates 597

23.7. Inhibitor Mixtures 598
23.8. Future Directions 598

23.9. References 599

24. Oil Field Mineral Scale Control 603

Ping Zhang, Amy T. Kan and Mason B. Tomson

24.1. Introduction 603
24.2. Common Oil Field Scales 603
24.2.1. Carbonate Scales 604
24.2.2. Sulfate Scales 604

24.3. Scale Control Strategies 606
24.4. Scale Inhibition by Use of Scale Inhibitors 607
24.4.1. Common Oil Field Inhibitors 607
24.4.2. Scale Inhibition—How Does It Work? 608

24.5. Scale Inhibition Treatment 609
24.5.1. Continuous Injection 610
24.5.2. Squeeze Treatment 610

24.5.3. Retention Mechanism of the Squeezed Inhibitors: Adsorption or Precipitation 611
24.5.4. Adsorption Mechanism 611
24.5.5. Precipitation Mechanism and Precipitation Squeeze 612
24.5.6. Recently Developed Squeeze Treatment Techniques 612
24.5.7. Nonaqueous Scale Inhibitors Development 613

24.6. Scale Removal Methods 614
Glossary 615
References 615

25. Scale in Sugar Juice Evaporators: Types, Cases, and Prevention 619

Christopher P. East, Christopher M. Fellows and William O.S. Doherty

25.1. Introduction 619
25.2. Types and Sources of Scale 621

25.3. Case Studies of Evaporator Scale 624
25.3.1. Scale Formation in Australian Sugar Mill Evaporators 624
25.3.2. Scale Formation in South African Sugar Mill Evaporators 625
25.3.3. Scale Formation in Fiji Cane Mill 626
25.3.4. Scales Formed in Beet Sugar Evaporators 627
25.3.5. New Developments in Scale Analysis 628

25.4. Scale Management 632
25.4.1. Scale Inhibitors 633
25.4.2. Evaporator Cleaning 634

25.5. Conclusion 636
References 636

26. Boiler Water Treatment 639

Bhabani Shankar Panigrahi and Krishnamurthy Ganapathysubramanian

26.1. Introduction 639
26.2. Silicate Deposits 640
26.3. Corrosion in Boilers 642
26.4. Effects of Scale/Deposits in Steam Generating Systems 643
26.5. Production of High Pure Water 643

26.6. Pretreatment of Raw/Source Water 643
26.6.1. Chlorination 643
26.6.2. Clarification and Softening 644

26.7. Water Purification Processes 644
26.7.1. Reverse Osmosis 644
26.7.2. Ion Exchange 646

26.8. Types of Boilers 647
26.8.1. Condenser 647
26.8.2. Condensate Polishing Unit 647

26.9. pH 649
26.9.1. Sources of Alkalinity 649

26.10. Dissolved Oxygen 650
26.10.1. Effect of Excess Hydrazine in FeedWater 651
26.10.2. Oxygenated Treatment 651

26.11. Conductivity 652
26.12. Silica 653
26.13. Copper 653
26.15. Chloride 654
26.16. Sodium 654

26.17. Conclusion 654
References 654
27. Scale Formation in Tungsten Hydrometallurgical Process 657

Raj P. Singh Gaur

27.1. Introduction 657
27.2. Purpose 658
27.3. Experimental Section 658
27.3.1. Scale Samples 658
27.3. Analytical Methods 659
27.4. Section 1: Tantalum–Niobium Scale: Na$_{14}$(Ta$_{0.715}$Nb$_{0.285}$)$_{12}$O$_{37.31}$H$_{2}$O and Na$_3$Ta$_{0.715}$Nb$_{0.285}$O$_{4}$ Form in the Filter Press 659
27.4.1. Background 659
27.4.2. Chemical Characterization of Tantalum–Niobium Scale 660
27.4.3. Chemistry of Scale Formation 661
27.4.4. SEM Analysis 662
27.4.5. Infrared Spectroscopy 663
27.4.6. Dehydration and Analysis of Heated Scale Sample 664
27.4.7. Mechanism of Scale Formation 665
27.4.8. Summary of Section 1 666
27.5. Section 2: Magnesium Hydroxide-Type Tungsten-Containing Scale 667
27.5.1. Previous Literature 667
27.5.2. Background 667
27.5.3. Genesis of the Scale 668
27.5.4. Chemical Composition and Phase Identification of Scale 670
27.5.5. Morphology of the Scale 672
27.5.6. Driving Force for the Formation of Scale 674
27.5.7. Mechanism of Scale Formation 675
27.5.8. Summary of Section 2 676
Acknowledgment 676
References 676

28. Analytical Techniques to Characterize Scales and Deposits 681

Christopher P. East, Tara L. Schiller, Christopher M. Fellows and William O.S. Doherty

28.1. Introduction 681
28.2. Analytical Techniques and Analysis 681
28.2.1. Visual Inspection and Light Microscopy 682
28.2.2. Wet Chemical Analysis 682
28.2.3. Scanning Electron Microscopy 684
28.2.4. X-ray Diffraction 685
28.2.5. X-ray Fluorescence (XRF) 685
28.2.6. X-ray Photoelectron Spectroscopy (XPS) 686
28.2.7. Fourier Transform Infrared Spectroscopy (FTIR) 687
28.2.8. Raman Spectroscopy 688
28.2.9. Thermal Gravimetric Analysis (TGA) 688
28.2.10. Inductively Coupled Plasma Optical Emission Spectroscopy and Mass Spectrometry (ICP–OES and –MS) 688
28.2.11. Atomic Absorption and Emission Spectroscopy (AAS/AES) 689
28.2.12. Other Analytical Techniques 689

28.3. Case Study 1—Power Plant Scrubber Scale 690
28.4. Case Study 2—Membrane Technology 693
28.4.1. Membrane Autopsy—European Power Station 694
28.5. Case Study 3—Blocked Cooling System in Polyethylene Plant 696
28.6. Case Study 4—Heat Exchangers in the Oil and Gas Industry 696
28.7. Case Study 5—Sugar Cane Juice Evaporator 697
Acknowledgments 698
References 698

29. Removal/Dissolution of Mineral Scale Deposits 701

Kalpana Chauhan, Poonam Sharma and Ghanshyam S. Chauhan

29.1. Introduction 701
29.1.1. Scale 702
29.1.2. Scale Formation 703
29.1.3. Chemical Background of Scale Formation 703
29.1.4. Nucleation and Particle Growth 705
29.1.5. Mechanism of Scale Formation 706
29.2. Scale Removal and Inhibition/Dissolution 706
29.2.1. Removal Techniques 707
29.2.2. Preventing Measures 710
29.3. Mechanisms of Dissolution and Inhibition 712
29.3.1. Threshold Inhibition 712
29.3.2. Chelates 712
30. Scaling Indices: Types and Applications 721

Robert J. Ferguson

30.1. Introduction 721
    30.1.1. Ion Association (Minimizing Assumption 1) 723
    30.1.2. Rigorous Carbonic Acid Calculations (Minimizing Assumption 2) 725
    30.1.3. Activity Coefficients Calculation (Minimizing Assumption 3) 727
    30.1.4. pH Variation with Temperature (Minimizing Assumption 4) 728
    30.1.5. Criticism of Indices 729
    30.1.6. Specialized and Derivative Indices 731
    30.1.7. Application Guidelines 731

30.2. Applications 732
    30.2.1. Oil Field Brines 732
    30.2.2. Scale Inhibition by Induction Time Extension 732

30.3. Summary and Recommendations 733
    Appendix 1: Derivation of a Simple Index 733
    References 734

31. On-Line Monitoring of Water Treatment Chemicals 737

Barbara E. Moriarty

31.1. Water Quality 737
31.2. Complete Water Analysis for Scale Control 738
31.3. Analysis of Individual Scale Components 739
31.4. Analysis/Monitoring of Scale Control Product 742
31.5. Product Monitoring—Individual Component 742
31.6. Biocide Monitoring and Control 743
31.7. Corrosion Control Products 744
31.8. On-line and At-line Analyzes 744
    References 745

Index 747