Contents

Chapter 1 Contexts, Perspectives, and Principles

- Plant interactions with the atmosphere, hydrosphere, and geosphere underpin terrestrial ecosystems
- Minimizing human impact on ecosystems and achieving global food security are significant challenges
- Proximate and ultimate questions elucidate how and why plants interact with the environment
- Resources, stressors, and toxins affect plant biomass production and quality
- Environmental factors that affect plant growth are interacting but independent variables
- Many reference soil groups are a product of interacting environmental variables
- Spatial and temporal analyses provide insights into plant responses to environmental variation
- Plants process information about environmental variation using signaling networks
- Differences in gene expression and in the genes expressed underpin a hierarchy of plant adaptations
- Environmental plant physiology is ecologically useful in defining plant traits and niches
- Studying plant–environment interactions can help to increase agricultural efficiency and sustainability
- Modeling is improving our understanding of plant–environment interactions
- Summary
- Further reading

Chapter 2 Light

- In plants, ancient photosynthetic systems provide the chemical energy for terrestrial ecosystems
- Photosystems, cytochromes, and ATP synthases transduce light energy into chemical energy
- Terrestrial plants have to adapt to a generally high and very variable light regime
- Plants can adjust quickly to variation in PAR using non-photochemical quenching
- Plants can adjust electron flows to help them to withstand variable light intensities
- PSII repair is important in plants that tolerate high light intensities
- Chloroplast movements can be used to adjust fairly rapidly the amount of light absorbed
- Photosystems, grana, and thylakoids adapt to differences in light regime
- Leaf optical properties are adapted to long-term variation in light regimes
- Adjustments in leaf position and plant architecture adapt plants to different light regimes
- Photoinhibition is most severe in alpine environments
- Summary
- Further reading

Chapter 3 Carbon Dioxide

- CO₂ fixation underpins the primary production of biomass
- Variation in the supply of CO₂ to plants is significant and affected by human activity
- The regulation of rubisco activity controls CO₂ entry into the Calvin–Benson cycle
- Oxygenation of RuBP decreases growth but provides rapid metabolic flexibility
- When there is a sustained low CO₂ supply, C₄ plants maintain a high CO₂:O₂ ratio in the vicinity of rubisco
- C₃-C₄ intermediates and C₄ plants show distinct responses to chronic differences in the environment
- Crassulacean acid metabolism adapts plants to chronically difficult CO₂-fixation conditions
- Long-term increased CO₂ levels can increase plant growth, but limiting factors can moderate this effect
- Plant responses to increasing CO₂ levels will affect the hydrological cycle and Earth’s climate
- An understanding of CO₂ fixation by plants is important for sustainable food production and ecosystem conservation
- Summary
- Further reading

Chapter 4 Water

- Plant–water relations affect physiological processes from a cellular to a global scale
- Water management is vital for ensuring global food security and minimizing the impact of human activity on the environment
- Water potential gradients drive water movement, including transpiration in trees over 100 m tall
- Short-term adjustments of resistance to water flux allow water homeostasis
- Summary
- Further reading
Many plants adapt physiologically to short-term water deficit 88
Extended water deficit induces changes in root growth 90
Leaf adaptations aid drought survival and provide alternative ways of capturing water 92
Succulent xerophytes are physiologically decoupled from their chronically arid environments 94
Resurrection plants cope with complete desiccation 95
Interactions between water and other stressors provide important environmental insights 99
Summary 100
Further reading 101

Chapter 5 Nitrogen 103
Nitrogen assimilated in plants is vital for the production of biomolecules in terrestrial organisms 103
Artificially fixed nitrogen significantly affects the biosphere and atmosphere 104
The concentration of different forms of soil nitrogen varies significantly 107
Plant nitrogen-transporter uptake capacity is tuned to variation in soil nitrogen supply 111
Plants integrate nitrogen from different sources by converting it to NH₃ for assimilation 113
Whole-plant physiological adjustments help to use different patterns of nitrogen supply 115
Plants adjust their root morphology in response to shortages of nitrogen 116
Symbioses contribute significantly to plant nitrogen uptake in nitrogen-deficient environments 117
Carnivorous plants are mixotrophs that can obtain nitrogen opportunistically from an erratic supply 123
Summary 126
Further reading 127

Chapter 6 Phosphorus 129
Phosphorus availability often controls terrestrial biomass production and ecosystem processes 129
Current phosphorus fertilizer regimes are unsustainable, inefficient, and often polluting 131
Phosphorus homeostasis is a key challenge for plants in terrestrial ecosystems 133
Plants have numerous transporters that regulate uptake and translocation 135
Plants can increase the availability of inorganic phosphorus and the breakdown of organic phosphorus 136
Plants can adjust their root system morphology to optimize phosphorus uptake 140
Mycorrhizas are major adaptations for phosphorus acquisition in low-phosphorus environments 142
Some species use cluster root systems to intensively mine phosphorus from the soil 146
Carnivorous plants digest organic phosphorus using phosphatases 150
Summary 150
Further reading 151

Chapter 7 Essential and Beneficial Elements 153
Terrestrial plants evolved to mine the soil for an ancient suite of available elements 153
The availability of essential nutrients limits biomass production and quality in many ecosystems 156
Elemental homeostasis is achieved using both ion-binding compounds and transport proteins 157
Plants adjust to a variable supply of micronutrients by overexpressing homeostatic components 159
Beneficial elements help many plant species to cope with a wide range of abiotic stresses 160
Sub-optimal sulfur availability can inhibit the synthesis of ecophysiologically important compounds 162
Potassium can limit ecosystem production, but its use in fertilizer has a moderate environmental impact 164
Calcium deficiency can occur in a variety of plants, and magnesium deficiency in a variety of crops 166
Adaptations of root anatomy and morphology help plants to respond to chronic nutrient deficiency 168
Many plants use symbioses with fungi and changes in rhizosphere microflora to aid nutrient uptake 170
Ionomics 171
Summary 173
Further reading 174

Chapter 8 Temperature 175
Plants are static poikilotherms, so significant variation in temperature is a considerable challenge 175
Changing global temperature regimes are affecting plant growth, development, and distribution 177
Plants detect temperature changes via physical changes in numerous biomolecules 180
Chilling, freezing, and heat initiate changes in key components of different signaling pathways 183
In some plants, chilling temperatures can induce an acclimation response based on the CBF regulon 184
Adaptation to non-optimal temperature necessitates maintaining membranes in the liquid-crystal state 186
Freezing-tolerant plants produce cryoprotectants and osmoprotectants 188
Heat-tolerant plants have protein curation mechanisms adapted to increase the rate of protein repair 191
Anatomical and morphological adaptations of leaves aid plant tolerance of prolonged cold and heat 194
Temperature-induced physiological changes trigger developmental and phenological responses 198
Summary 199
Further reading 199

Chapter 9 Salinity 201
Terrestrial plants are descended from freshwater algae, so saline water is generally toxic to them 201
Plant responses to salinity are important in irrigated agriculture and in salt marshes and mangrove swamps 204
Exposure to salt induces osmotic and ionic stresses in plants 208
Sodium can enter plants via symplastic and apoplastic pathways, but can be removed from the cytoplasm 211
Salt-tolerant plants compartimentalize sodium, and halophytes also control potassium:sodium ratios 213
At high salinity, halophytes synthesize specialized metabolites in order to adapt to osmotic challenges 215
Salt tolerance in crops has been increased by manipulating biochemical and physiological traits 217
Halophytes that face severe osmotic stresses have morphological and physiological adaptations 219
Some halophytes use specialized organs to excrete sodium chloride from their leaves 221
Mangrove and salt-marsh plants tolerate waterlogging and salinity 223
Summary 224
Further reading 225

Chapter 10 Soil pH 227
Soil pH affects the growth of both wild and domesticated plants 227
Soil pH is operationally defined and human activities are affecting it on a global scale 229
Plant cells have multiple mechanisms for buffering cytosolic pH 233
Acid soils contain high solution concentrations of ions that are toxic to plant cells 234
Some plants resist the effects of moderate soil acidity by excluding aluminum from the cytoplasm 237
For many plants on acid soils, mycorrhizal associations increase aluminum resistance 240
On very acidic soils, some plants take up and compartmentalize aluminum 241
Basic soils are low in important nutrients and induce characteristic symptoms in plants 243
Some plants have adapted to scavenge iron, zinc, and manganese from basic soils 246
Nicotianamine aids iron homeostasis, and in grasses evolved into root exudates that chelate iron 247
Ecologically important iron and zinc deficiency responses are finding important agricultural uses 249
Summary 250
Further reading 251

Chapter 11 Flooding 253
Flooding is a significant variable in both unmanaged and managed terrestrial ecosystems 253
Human activity is adversely affecting wetlands and increasing the incidence of flooding 255
Waterlogged soils are low in oxygen and some nutrients, but high in toxins 255
Soil waterlogging rapidly induces hypoxia, cellular acidosis, and decreased water uptake 258
Physiological adjustments enable some plants to withstand soil waterlogging for short periods 259
Ethylene signaling is central to plant responses to excess water 261
In many plants, waterlogging-induced hypoxia induces changes in root anatomy 262
Wetland plants form extensive constitutive aerenchyma and adapt morphologically to flooding 266
In some flooded soils, pneumatophores help woody plants to aerate their roots 268
The adaptations of wetland plants often produce oxidized rhizospheres 269
Some plants can adapt to submergence of their shoots 271
Emergent aquatic macrophytes can force oxygen down through organs buried deep in anoxic mud 273
Some aquatic macrophytes are adapted to living permanently submerged 275
Summary 275
Further reading 276
Chapter 12 Inorganic Toxins 279
A few reactive elements are essential, but they and many non-essential elements can also be toxic 279
Human activity is significantly increasing the concentrations of inorganic toxins in the Earth's ecosystems 281
Homeostatic mechanisms control the uptake and translocation of reactive elements in plants 284
Exposure to inorganic toxins decreases growth and reproduction via physiological and genetic effects 288
Amplified homeostatic mechanisms in the roots of some species produce a metal-tolerant physiology 292
Some plants have the capacity to minimize the uptake of toxins from high external concentrations 295
Some plants can hyperaccumulate inorganic toxins in their shoots 296
Chronic exposure to toxins in metalliferous ecosystems provides some unique biological insights 300
Control of soil-to-plant transfer of inorganic toxins is useful in agriculture and phytoremediation 301
Summary 303
Further reading 303

Chapter 13 Organic Toxins 305
Plants can control the reactivity of many organic functional groups 305
Synthetic organic compounds underpin modern life but can have a significant environmental impact 308
The entry of organic toxins into plants depends on soil, plant, and chemical properties 309
Organic toxins elicit reactive and perhaps also proactive stress responses in plants 313
In plant cells, many organic toxins can be transformed enzymatically 315
In some plants, organic toxins and their transformation products can be deactivated by conjugation 317
In some plants, conjugated organic toxins can be allocated to metabolically inactive compartments 319
Non-target-site herbicide resistance can evolve from xenobiotic detoxification mechanisms 320
Target-site resistance helps plants to adapt to catastrophic exposure to herbicides 323
Plants enhance the bioremediation of water and soils contaminated with organic xenobiotics 324
Manipulation of plant tolerance of organic toxins is of increasing importance 327

Chapter 14 Air Pollutants 331
Plants are dependent on an extensive surface area that interacts with the atmosphere 331
Adverse effects of air pollution on plants will be important in the twenty-first century 334
The deposition of air pollutants on plants depends on the properties of plants and pollutants 336
Plants can assimilate some sulfur dioxide, but anthropogenic deposition rates can exceed this capacity 337
Direct uptake of gaseous reactive nitrogen species can affect plant growth and ecosystem dynamics 339
Semi-volatile and volatile organic compounds can be absorbed by and released from vegetation 342
Chronic effects of ozone on terrestrial plants will be significant in the twenty-first century 345
Particulates filtered by plants from the atmosphere can affect their growth 348
Plants can be used to monitor and manage air quality 350
Summary 351
Further reading 352

Chapter 15 Synopsis and Outlook 355
Plant-environment interactions play a significant role in determining the boundaries of non-linear effects in Earth systems 355
The understanding of plant stress response mechanisms can be extended by comparisons with other organisms 356
Our understanding of the importance of variation in plant-environment interactions can be extended by modeling that includes the pattern and scale of variation 358
Understanding how plant stress responses evolved will provide insights about the plant-environment interface 359
Understanding plant-environment interactions helps us to confront global challenges 361
Further reading 362

Abbreviations list 363
Glossary 365
Index 378