TABLE OF CONTENTS

Acknowledgements
ix

Preface
xi

Conference Purpose and Goals
xiii

I. Space Debris

1. 30 Years of Space Debris Mitigation Guidelines in Europe
 F. Alby
 3

2. Space Debris Removal by Ground Based Laser Main Conclusions of the European Project CLEANSPACE
 Bruno Esmiller, Christophe Jacqueld, Hans-Albert Eckel, Edwin Wnuk and Yann Gouy
 13

3. Mission Architecture for Active Space Debris Removal using the Example of SL-8 Rocket Bodies
 Susanne Peters, Roger Förstner and Hauke Fiedler
 23

4. Enabling Technologies for Active Space Debris Removal: The Cadet Project
 Alessandro Chiesa, Franco Fossati, Giovanni Gambacciani and Emanuele Pensavalle
 29

I.a Space Debris Removal and De-orbitation

1. Conceptual Design of an “Umbrella” Spacecraft for Orbital Debris Shielding
 Daniel M. Thomson, Aleksandr Cherniaev and Igor Telichev
 41

2. Unconventional Methods for Space Debris Removal
 Bharat Chaudhary
 49

3. De-orbit Strategies with Low-Thrust Propulsion
 A. Gaudel, C. Hourtolle, J.F. Goester, N. Fuentes and M. Ottaviani
 59

4. On-orbit Demonstration Plan and Development Status of Electrodynamic Tether Technology on H-II Transfer Vehicle
 Toru Kasai, Daisuke Tsujita, Eiichiro Nakano, Satomi Kawamoto, Yasushi Ohkawa, Yuuta Horikawa and Koichi Inoue
 69

5. Benefits of Adopting a Spacecraft Decommissioning Device to Implement Orbital Access Sustainability
 Giuseppe Tussi, Stefano Antonetti, Luca Rossetti and Francesco Di Tolle
 77

II. Space Safety Culture, Policy and Legal Challenges

1. Legal Regime of Radio Frequency Interference
 Wu Xianshu
 91

2. Space Safety is no Accident how the Aerospace Corporation Promotes Space Safety
 William F. Tosney and Paul G. Cheng
 101

3. Bridging the Gap: Science and Policy for the Safety of Space Environments Against Contamination – The Planetary Protection Index
 Lauren Napier and Sebastian Hettrich
 109

4. The Fallacy of Space Safety
 John E. Babcock
 119

III. Safety by Design

1. Revisions to the Crewed Space Vehicle Battery Safety Requirements JSC 20793
 Judith A. Jeevarajan
 127

2. Safety of Lithium-ion Cells at Different States of Charge
 Judith A. Jeevarajan
 131

3. Columbus ECLSS and TCS Safety and Reliability Considerations for ISS Life Time Extension
 Alessandro Nocera, Laura Garbellini, Alexander Getimis and Piera Mannini
 135
<table>
<thead>
<tr>
<th>IV. Launch Safety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A Simulator for Training Flight Safety Officers at the Guiana Space Center</td>
<td>163</td>
</tr>
<tr>
<td>Ludovic Rochas</td>
<td></td>
</tr>
<tr>
<td>2. Safety Evaluation and Experience of Hydrogen Peroxide in Launchers Domain</td>
<td>169</td>
</tr>
<tr>
<td>at Guiana Space Centre</td>
<td></td>
</tr>
<tr>
<td>Ferlin Massimo</td>
<td></td>
</tr>
<tr>
<td>3. Examining the Underlying Causes of Space Launch Failures</td>
<td>179</td>
</tr>
<tr>
<td>Arif Goktug Karacalloglu and Dr. Angie Bukley</td>
<td></td>
</tr>
<tr>
<td>4. Flight Safety System Operation During KSLV-I Flight</td>
<td>189</td>
</tr>
<tr>
<td>Hyungsok Sim, Kyusung Choi and Jeonghwan Ko</td>
<td></td>
</tr>
<tr>
<td>5. Demonstration of Propellant Leakage Phenomena for Safety Assessment</td>
<td>195</td>
</tr>
<tr>
<td>Manami Nogami, Go Fujii, Ideo Masuda and Masaru Wada</td>
<td></td>
</tr>
<tr>
<td>6. Real-Time Mexican Satellite Space Launch Center Failure Model, System Design and Failure Analysis</td>
<td>201</td>
</tr>
<tr>
<td>Omar Ariosto Niño Prieto, Luis Enrique Colmenares Guillén and Jose Areal Carrera Román</td>
<td></td>
</tr>
<tr>
<td>7. Effects of the Trapping Criteria on the Severity of the Resultant Yield Histogram for Blast DFO Risk Assessment</td>
<td>211</td>
</tr>
<tr>
<td>Ahmed M. Fadl, Ph.D.</td>
<td></td>
</tr>
<tr>
<td>8. Quality versus Safety?</td>
<td>219</td>
</tr>
<tr>
<td>Bruno Lazare and Isabelle Rongier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. Commercial Human Spaceflight Safety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Kirkpatrick and Nathan Vassberg</td>
<td></td>
</tr>
<tr>
<td>2. Safety in Numbers? (Lessons Learned from Aviation Safety Assessment Techniques)</td>
<td>235</td>
</tr>
<tr>
<td>Stuart Baskcomb and Driss Ouedghiri</td>
<td></td>
</tr>
<tr>
<td>Dr Andy Quim, Amaya Atencia Yepez, Michael Klicker, Diane Howard, Alberto Del Bianco, Christophe Chavagnac and Carolynne Campbell</td>
<td></td>
</tr>
<tr>
<td>4. The X-15 3-65 Accident: An Aircraft Systems and Flight Control Perspective</td>
<td>249</td>
</tr>
<tr>
<td>Jeb S. Orr, Irving C. Statler and Immanuel Barshi</td>
<td></td>
</tr>
<tr>
<td>5. FAA’s Development of Recommended Practices for Human Space Flight Occupant Safety</td>
<td>259</td>
</tr>
<tr>
<td>J. Randall Repcheck</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V.a Human Factor & Safety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Human Factors of an early space accident: Flight 3-65 of the X-15</td>
<td>267</td>
</tr>
<tr>
<td>Immanuel Barshi, Irving C. Statler and Jeb S. Orr</td>
<td></td>
</tr>
<tr>
<td>2. Defining Reliability and Robustness from a Human Factors Perspective</td>
<td>277</td>
</tr>
<tr>
<td>Alan Hobbs, John O’Hara, Bernard Adelstein and Cynthia Null</td>
<td></td>
</tr>
<tr>
<td>3. The Importance of Analog Planetary Research for Success and Safety of Human and Robotic Space Missions</td>
<td>285</td>
</tr>
<tr>
<td>Sebastian Hettrich, Lauren Napier, Carmen Victoria Felix, Agata Kołodziejczyk, Nikolaos Perakis, Iñigo Muñoz Elorza, Ali Alzade, Leila Ghaseinzadeh, Muhammad Shadab Khan, Isabella Pfeil and the APO-G team</td>
<td></td>
</tr>
<tr>
<td>4. Approaching Human-Robot Interaction with Resilience</td>
<td>295</td>
</tr>
<tr>
<td>Knut Fossum and Abdul Basit Mohammad</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

5. Adaptation of the ISS Human Behaviour & Performance Competency Model as Observation & Debriefing Tool for Mission Control Teams During Simulations
 Susan Buckle, Regina Peldszus and Loredana Bessone
 303

6. Training Safe and Effective Spaceflight Operations using Terrestrial Analogues
 L. Bessone, F. Sauro and H. Stevenin
 313

V.b Human Spaceflight Safety

1. Industry Initiated Core Safety Attributes for Human Spaceflight for the 7th IAASS Conference
 Edward J. Mango
 321

2. Concepts for the In-Flight Handling of Safety Critical Liquids in Biological Experiments
 Peter Kern and Till Eisenberg
 327

3. Design for Reliability in Aviation (A must to improve Life Cycle Cost, Safety and Availability)
 Driss Ouedghiri and Stuart Baskcomb
 333

4. The Max Launch Abort System – Concept, Flight Test, and Evolution
 Michael G. Gilbert, PhD
 343

VI. Space Traffic Management

1. Operational Feedback on Four Years of Collision Risk Avoidance at Launch in Europe
 D.A. Handschuh, C. Wang and B. Vidal
 355

2. Monitoring Space Weather at GSSAC
 Klaus Börger and Michael Schmidt
 365

3. Contributions of the EU Satcom to a European SST Capability: Technical Elements on Governance and Data Policy
 J.L. Valero, J. Alves, B. Gallardo, J. Matute, A. O'Dwyer and N. Paradiso
 371

4. Small Debris Fragments Contribution to Collision Probability for Spacecraft in Low Earth Orbits
 Francesca Letizia, Camilla Colombo and Hugh G. Lewis
 379

5. Evolving Spacecraft Operator Duty of Care
 James D. Rendleman, JD, LLM and Sarah M. Mountin, Major, US Air Force, JD, LLM
 389

6. SBSS Demonstrator: A Design for Efficient Demonstration of Space-Based Space Surveillance End-To-End Capabilities
 Jens Utzmann, Axel Wagner, Jiri Silha, Thomas Schildknecht, Philip Willemsen, Frédéric Teston and Tim Flohrer
 405

VII. Re-entry Safety

 Dr. Lisa Ling
 415

2. TRADE-OFF Atmospheric Re-entry: Design for Demise vs Controlled Re-entry
 S. Heinrich, F. Leglise, L. Harrison, F. Renard and O. Nold
 423

3. Verification and Application of the Sam Re-entry Model
 437

4. Re-entry Trajectory Analysis: Prediction of Uncontrolled Atmospheric Re-entry of Orbital Objects Under Operational Aspects
 Marius Eickmans
 445

5. Satellite Re-entry Prediction Products for Civil Protection Applications
 Carmen Pardini and Luciano Anselmo
 453

6. Aerothermal Heating Methodology in the Spacecraft Aerothermal Model (SAM)
 J. Merrifield, J. Beck, G. Markelov, P. Leyland and R. Molina
 463

7. Uncertainty Quantification for Re-entry Survivability Prediction
 B. Fritsche
 469

8. Cubesat Material Limits for Design for Demise
 R.L. Kelley and D.R. Jarkey
 479
VIII. Orbital Station & Extraterrestrial Habitat Safety
1. Admire: Assessing the Risk
 Jerold M. Haber and Randy Nyman
 Mona Schiefloe, Per Morten Schiefloe and Ate William Heskestad
3. A Small Nuclear Reactor Concept for Martian Surface use
 Hu Gu, Guo Jian, Gao Jian and Yao Chenzhi
4. The Ultimate Step for Mars Mission Safety: Designing for Survivability
 Richard Heidmann
5. The Failures of the Electronics of the Space Vehicles in the Conditions of Complex Influence of Space Factors
 T. Musabayev, Zh. Zhantayev, V. Grichshenko and I. Kulanov

IX. Hazard Analysis & Risks Assessment
1. Resilient Redundancy: Design Study of the New HTV (H-II Transfer Vehicle)
 Hideki Nomoto, Satoshi Ueda, Shinichi Takata, Toru Kasai, Tsutomu Fukatsu, Ryoji Kobayashi, Manami Nogami and Yasufumi Wakabayashi
2. Flammability Test Plan for Fire Safety of KSLV-II
 Baeg-Woo Shin, Seong-Lyong Kim, Sang-Yeon Cho and Jeong-Hwan Ko
3. Effective S&MA Activities Based on the Experiences during JEM Operation
 Satomi Takada, Shunsuke Sasaki, Masami Miki, Yoshihiro Iwata and Shimpei Takahashi
4. Mechanical Ground Support Equipments (MGSE) for Arsat-1 Hazard Analysis
 J. González, C. Bastias, E. Barberis and D. Delbianco

X. Space Risks for Aviation
1. The First 100KM, the Case for Integrated Space and Aviation Policy and Governance
 Dr. Ruth Stilwell
2. Impact Testing and Improvements in Aircraft Vulnerability Modeling for Range Safety
 Paul D. Wilde, Ph.D., P.E.
3. Risks of Atmospheric Re-entries on Aircrafts CNES Progress on Studies
 N. Fuentes, N. Tholey and M. Studer

Appendix A: List of Participants
Appendix B: Photos