Contents to Volume 2

List of Contributors XV
Preface XXV
Acknowledgments XXVII

Part IV: Biological Applications of Marine Algae 347

21 Algal Extracts in Dentistry 349
Marcin Mikulewicz and Katarzyna Chojnacka
21.1 Introduction 349
21.2 Various Applications of Products Derived from Algae in Dentistry 349
21.2.1 Impression Materials 349
21.2.1.1 Agar and Alginate Hydrocolloid Impression Material 351
21.2.1.2 Other Hydrocolloids (Agar) 352
21.2.2 Toothpastes 352
21.2.3 Mouthwash 352
21.2.4 Anti-Inflammatory Applications 353
21.2.5 Alloplastic Synthetic Grafts (Fluorohydroxyapatitic Biomaterial) 353
21.2.6 Biocompatibility 354
21.3 Additional Applications 355
21.3.1 Potential Application of Mineralization Properties 355
21.3.2 Biomaterials 355
21.3.2.1 Antiplaque and Anticalculus Properties 355
21.3.3 Regenerative Materials in Periodontal Diseases 355
21.3.4 Chewing Gums 355
21.4 Conclusions 356
References 357
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Marine Algae for Protecting Your Brain: Neuroprotective Potentials of Marine Algae</td>
<td>359</td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>359</td>
</tr>
<tr>
<td>22.2</td>
<td>Neuroprotective Properties of Algae and Algae-Derived Compounds</td>
<td>360</td>
</tr>
<tr>
<td>22.2.1</td>
<td>Anti-Inflammatory Compounds</td>
<td>360</td>
</tr>
<tr>
<td>22.2.2</td>
<td>Compounds against Oxidative Stress and Mitochondrial Dysfunction in Neuron</td>
<td>362</td>
</tr>
<tr>
<td>22.2.3</td>
<td>Marine Algae against Aggregated Misfolded Proteins-Induced Neurotoxicity</td>
<td>364</td>
</tr>
<tr>
<td>22.2.4</td>
<td>Cholinesterase Inhibitory Activity</td>
<td>365</td>
</tr>
<tr>
<td>22.2.5</td>
<td>Other Algae-Derived Neuroprotective Materials</td>
<td>366</td>
</tr>
<tr>
<td>22.3</td>
<td>Concluding Remarks</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>367</td>
</tr>
<tr>
<td>23</td>
<td>Antiviral Activities of Marine Algal Extracts</td>
<td>371</td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>371</td>
</tr>
<tr>
<td>23.2</td>
<td>Substances Responsible for Antiviral Activity of Algal Extracts</td>
<td>372</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Phlorotannins</td>
<td>372</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Polysaccharides</td>
<td>374</td>
</tr>
<tr>
<td>23.2.3</td>
<td>Lectins</td>
<td>376</td>
</tr>
<tr>
<td>23.2.4</td>
<td>Others</td>
<td>377</td>
</tr>
<tr>
<td>23.3</td>
<td>Conclusion</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>378</td>
</tr>
<tr>
<td>24</td>
<td>Antihyperglycemic of Sargassum sp. Extract</td>
<td>381</td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>381</td>
</tr>
<tr>
<td>24.2</td>
<td>Seaweed Bioactivities</td>
<td>382</td>
</tr>
<tr>
<td>24.3</td>
<td>In Vivo Hypoglycemic Activity of S. aquifolium Extract</td>
<td>384</td>
</tr>
<tr>
<td>24.3.1</td>
<td>Inhibition of α-Amylase and α-Glucosidase by Sargassum sp. Extracts</td>
<td>385</td>
</tr>
<tr>
<td>24.3.2</td>
<td>Area under Curve (AUC)</td>
<td>386</td>
</tr>
<tr>
<td>24.4</td>
<td>In Vivo Hypoglycemic Effects of S. aquifolium Extracts on Diabetic Rats</td>
<td>387</td>
</tr>
<tr>
<td>24.4.1</td>
<td>Body Weight</td>
<td>388</td>
</tr>
<tr>
<td>24.4.2</td>
<td>Blood Glucose</td>
<td>389</td>
</tr>
<tr>
<td>24.4.3</td>
<td>Hemoglobin A₁c (HbA₁c)</td>
<td>390</td>
</tr>
<tr>
<td>24.5</td>
<td>Conclusion</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>391</td>
</tr>
</tbody>
</table>
25 Immunological Activity of Marine Microalgae Extracts 395
Mariangela Caroprese, Maria G. Ciliberti, and Marzia Albenzio
25.1 Marine Microalgae Extracts 395
25.1.1 Phytosterols 398
25.1.2 Carotenoids and Vitamins 399
25.1.3 Polyunsaturated Fatty Acids 399
25.2 Overview of the Immune System 401
25.2.1 Immunological Activity of Sterols 402
25.2.2 Immunological Activity of Carotenoids and Vitamins 405
25.2.3 Immunological Activity of Fatty Acids 406
25.3 Conclusion 407
References 407

26 Algal Polysaccharides and Their Biological Applications 411
Sirisha L. Vavilala and Jacinta S. D'Souza
26.1 Introduction 411
26.2 Algal Sulfated Polysaccharides 414
26.2.1 Sulfated Polysaccharides from Brown Algae 414
26.2.1.1 Alginites 414
26.2.1.2 Laminarin 415
26.2.1.3 Fucoidan 416
26.2.2 Sulfated Polysaccharides from Red Algae 418
26.2.2.1 Carrageenans 418
26.2.2.2 Agar 419
26.2.3 Sulfated Polysaccharides from Green Algae 421
26.2.3.1 Ulvans 421
26.3 Applications of Bioactive Algal Polysaccharides 422
26.3.1 Anticoagulant and Antithrombotic Activities of Sulfated Polysaccharides 423
26.3.2 Antiviral Activities 427
26.3.3 Immunoinflammatory Activities 429
26.3.4 Antioxidant Activities 431
26.3.5 Antilipidemic Activities 431
26.3.6 Sulfated Polysaccharides as Dietary Fibers 432
26.3.7 Seaweed Products and Potential of Its Biomass 433
26.3.7.1 Alginites 433
26.3.7.2 Agar 435
26.3.7.3 Mannitol 435
26.3.8 Seaweed Biomass for Bioenergy Production 435
26.3.8.1 Ethanol and Butanol from Brown Seaweeds 436
26.4 Future Prospects and Conclusion 438
References 438
27 Biological Phlorotannins of Eisenia bicyclis 453
Sang-Hoon Lee and Se-Kwon Kim

27.1 Introduction 453
27.2 Biological Activities of E. bicyclis 455
27.2.1 Antiviral Activity 455
27.2.2 Antioxidant Activity 456
27.2.3 Antitumor Activity 457
27.2.4 Anti-Inflammatory Activity 458
27.2.5 Antidiabetic Activity 460
27.3 Concluding Remarks 460
Acknowledgment 461
References 461

Part V: Biomedical Applications of Marine Algae 465

28 Algal Extracts as a Carrier of Micronutrients – Utilitarian Properties of New Formulations 467
Łukasz Tuhy, Katarzyna Chojnacka, Izabela Michalak, and Anna Witek-Krowiak

28.1 Introduction 467
28.2 The Application of Chelation Process in the Fertilizer Industry 467
28.3 Mechanism of Chelation 468
28.4 Seaweed Polysaccharides as a Source of Natural Chelators of Micronutrient Ions 468
28.5 Examples of Seaweed Polysaccharides – Potential Chelators of Microelement Ions 469
28.5.1 Alginate 469
28.5.2 Carrageenan 471
28.5.3 Ulvan 472
28.5.4 Fucoidan 473
28.5.5 Laminarin 474
28.5.6 Agar 475
28.5.7 Porphyran 475
28.6 Gel Formation by Seaweed Polysaccharides 476
28.7 Extraction Procedure of Polysaccharides 478
28.8 Examples of Chelating Properties of Extracted Seaweed Polysaccharides 479
28.9 New Approach toward Chelating Micronutrients by Polysaccharides 480
28.10 Regulations 482
28.11 Examples of Available Commercial Products 482
28.12 Conclusions 483
Acknowledgments 483
References 484
29 Marine Algae Based Biomaterials for Osteoblast Differentiation and Tissue Regeneration 489
Pathum Chandika and Won-Kyo Jung
29.1 Introduction 489
29.2 Scaffolds for Tissue Regeneration 490
29.3 Potentials of Marine Algae Derived Biomaterials for Bone Regeneration 492
29.3.1 Marine Algae Sauce for Bone Tissue Engineering 492
29.3.2 Algae Based Hydroxyapatite for Bone Tissue Engineering 498
29.4 Effects of Marine Algae on Osteoblast Differentiation 499
29.5 Osteoclast Inhibition through Marine Algae 500
29.6 Conclusions 501
Acknowledgments 502
References 502

30 Marine Algae Derived Polysaccharides for Bone Tissue Regeneration 509
Jayachandran Venkatesan and Se-Kwon Kim
30.1 Introduction 509
30.2 Alginate 511
30.2.1 Isolation Procedure of Alginate from Seaweed 511
30.2.2 Biomedical Application of Alginate 511
30.3 Fucoidan 513
30.3.1 Isolation of Fucoidan 514
30.3.2 Osteogenic Differentiation of Fucoidan 516
30.3.3 Fucoidan Composites for Bone Tissue Engineering 516
30.4 Conclusions 517
Acknowledgments 517
References 517

31 Wound Dressings from Algal Polymers 523
Monica Bhatnagar and Ashish Bhatnagar
31.1 Introduction 523
31.2 Wound 524
31.3 Wound Healing 525
31.4 Wound Dressings 527
31.5 Algal Polymers in Wound Management 527
31.5.1 Macroalgae 527
31.5.1.1 Alginate 528
31.5.1.2 Fucoidan 531
31.5.1.3 Carrageenan 535
31.5.1.4 Ulvans 537
31.5.1.5 Agar Agar 539
31.5.1.6 Laminarin 542
31.5.2 Microalgal and Cyanobacterial Polymers 543
31.6 Conclusion 544
References 545

32 Marine Algae and Chronic Diseases 557
Kalimuthu Senthilkumar and Se-Kwon Kim
32.1 Introduction 557
32.2 Marine Algae 558
32.3 Biological Activity of Marine Algae 559
32.4 Marine Algae on Chronic Diseases 560
32.4.1 Cardiovascular Disease 561
32.4.2 Diabetes 562
32.4.3 Arthritis 563
32.4.4 Osteoporosis 564
32.4.5 Neurodegenerative Diseases 564
32.4.6 HIV/AIDS 565
32.4.7 Anticancer 566
32.5 Conclusion 567
Acknowledgments 567
References 568

33 Algae Wastes Biomass: A New Class of Low-Cost Material with Potential Applications in Environmental Engineering 575
Laura Bulgariu and Dumitru Bulgariu
33.1 Introduction 575
33.2 Some Structural Characteristics of Algae Waste Biomass 577
33.3 Utilization of Algae Waste Biomass for Heavy Metals Removal in Batch Systems 580
33.3.1 Influence of Some Experimental Parameters on Biosorption Efficiency 580
33.3.2 Desorption and Reuse 588
33.3.3 Modeling of Biosorption Process of Heavy Metals on Algae Waste Biomass 589
33.4 Utilization of Algae Waste Biomass for Heavy Metals Removal in Continuous Systems 593
33.5 Conclusions 597
References 598

Part VI: Food and Industrial Applications of Marine Algae 603

34 Algae Extract as a Potential Feed Additive 605
Mariusz Korczyński, Zuzanna Witkowska, Sebastian Opaliński, Marita Świarińska, and Zbigniew Dobrzakiński
34.1 Introduction 605
34.2 Biologically Active Compounds 606
34.2.1 Polysaccharides 606
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.2.2</td>
<td>Proteins</td>
<td>609</td>
</tr>
<tr>
<td>34.2.3</td>
<td>Polyunsaturated Fatty Acids (PUFAs)</td>
<td>610</td>
</tr>
<tr>
<td>34.2.4</td>
<td>Polyphenols</td>
<td>614</td>
</tr>
<tr>
<td>34.2.5</td>
<td>Pigments</td>
<td>615</td>
</tr>
<tr>
<td>34.2.6</td>
<td>Minerals</td>
<td>617</td>
</tr>
<tr>
<td>34.2.7</td>
<td>Other Biologically Active Compounds</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>617</td>
</tr>
</tbody>
</table>

35 Application of Marine Algae Derived Nutraceuticals in the Food Industry

Isuru Wijesekara and Se-Kwon Kim

35.1 Introduction 627
35.2 Bioactive Components from Marine Algae as Nutraceuticals 628
35.2.1 Phlorotannins 628
35.2.2 Sulfated Polysaccharides 628
35.2.3 Fucoxanthin and Astaxanthin 629
35.2.4 Lectins 631
35.2.5 Fucosterol 631
35.2.6 Mycosporine-Like Amino Acids 631
35.2.7 Proteins and Peptides 632
35.3 Health Beneficial Effects of Nutraceuticals from Marine Algae 632
35.3.1 Anticancer Effect 632
35.3.2 Antioxidant Effect 633
35.3.3 Anticoagulant Effect 633
35.3.4 Anti-HIV and Antimicrobial Effects 634
35.4 Concluding Remarks 634
References 635

36 Microalgal Carotenoids: Bioactive Roles, Health Foods, and Pharmaceuticals

J. Paniagua-Michel, Jorge Olmos Soto, and Eduardo Morales Guerrero

36.1 Introduction 639
36.2 Bioactive Roles of Microalgal Carotenoids 640
36.3 Microalgal Carotenoids as Food Additives 643
36.3.1 β-Carotene from Dunaliella salina 644
36.3.2 Astaxanthin from Haematococcus 644
36.3.3 Lutein from Chlorella 644
36.4 Carotenoids from Microalgae for Aquaculture 646
36.5 The Pro-vitamin A Bioactivity of Microalgal Carotenoids 647
36.6 Microalgal Carotenoids and Their Antioxidant Activity 648
36.7 Microalgae Carotenoids: Biomedical and Pharmaceutical Potential 650
36.8 Anticancer Properties of Microalgal Carotenoids 651
36.9 Carotenoids and Macular Degeneration 653
37 Biologically Active Organic Compounds, Especially Plant Promoters, in Algae Extracts and Their Potential Application in Plant Cultivation 659
Bogusława Górka, Jacek Lipok, and Piotr P. Wieczorek

37.1 Algae as a Source of Bioactive Substances 659
37.2 Plant Hormones and Hormone-Like Compounds in Algae 662
37.2.1 Auxins 663
37.2.2 Gibberellins 664
37.2.3 Cytokinins 665
37.2.4 Brassinosteroids 666
37.2.5 Other Compounds Regulating Plant Growth 666
37.3 Methods of Isolation and Fractionation of Active Compounds from Algal Extracts 668
37.4 Algal Extracts – Sample Preparation for Analytical Purposes 670
37.5 Quantitative and Qualitative Methods of Algal Active Compounds Determination 672
37.6 Application of Algae and Algal Originated Products in Agriculture 673
37.7 Perspectives 675
Acknowledgment 676
References 676

38 Biomass and Extracts of Algae as Material for Cosmetics 681
Joanna Fabrowska, Bogusława Łęska, Grzegorz Schroeder, Beata Messyasz, and Marta Pikosz

38.1 Introduction 681
38.2 Bioactive Compounds 682
38.2.1 Polysaccharides 682
38.2.2 Proteins 686
38.2.3 Lipids 687
38.2.4 Pigments 688
38.2.5 Phenolic Compounds and Others 689
38.3 Application in Cosmetic Products 690
38.3.1 Algae Biomass 691
38.3.2 Algae Extracts 693
38.3.3 Quality Assurance and Regulations 698
38.4 Conclusion 701
Acknowledgments 701
References 701

Index 707