DIFFERENTIABILITY AND
FRAC TALITY IN DYNAMICS
OF PHYSICAL SYSTEMS

Ioan Merches
Alexandru Ioan Cuza University, Iasi, Romania

Maricel Agop
Gheorghe Asachi Technical University, Iasi, Romania
Contents

Preface vii

1. Principles of Motion in Invariantive Mechanics 1
 1.1 The Euler-Lagrange and Hamilton's equations obtained by means of exterior forms 1
 1.2 The Cartan motion principle 4

2. Inertial Invariantive Motion of the Material Point 7
 2.1 Preliminaries 7
 2.2 Inertial motion of the particle (material point) 7
 2.3 The Minkowski-Einstein universe. The Lorentz metric and Lorentz transformations 13
 2.4 The anti-Minkowski type Universe 16
 2.5 Inertial motion of the particle in the Minkowski-Einstein type universe 16

3. Field Invariantive Theories 19
 3.1 Preliminaries 19
 3.2 Linear field theory 19
 3.3 Nonlinear field theory 28
 3.4 Comments of Maxwellian and anti-Maxwellian type fields 31
4. **Ondulatory Invariantive Theories.**

Wave-Corpuscule Duality

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Preliminaries</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Linear wave theory</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Minkowskian formulation of the ondulatory linear theory</td>
<td>38</td>
</tr>
<tr>
<td>4.4 De Broglie’s linear theory</td>
<td>39</td>
</tr>
<tr>
<td>4.5 The de Broglie-Takabayashi theory</td>
<td>41</td>
</tr>
<tr>
<td>4.6 Hamilton-Jacobi equation associated with the motion of a particle in various fields. Correspondence with de Broglie’s theory</td>
<td>47</td>
</tr>
</tbody>
</table>

5. **Invariantive Mechanics of Systems of Material Points**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Euclidean invariants and the principle of motion</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Conservation laws</td>
<td>51</td>
</tr>
<tr>
<td>5.3 Expressions for linear momenta</td>
<td>52</td>
</tr>
<tr>
<td>5.4 Expression for energy</td>
<td>53</td>
</tr>
<tr>
<td>5.5 The inertial masses</td>
<td>55</td>
</tr>
<tr>
<td>5.6 The two-body problem in Newtonian mechanics</td>
<td>58</td>
</tr>
<tr>
<td>5.7 The two-body problem in general relativity</td>
<td>63</td>
</tr>
<tr>
<td>5.8 The motion of light in fields with Schwarzschild metric</td>
<td>67</td>
</tr>
<tr>
<td>5.9 The two-body problem in invariantive mechanics. The perihelion advance</td>
<td>72</td>
</tr>
<tr>
<td>5.10 Hubble’s law</td>
<td>80</td>
</tr>
<tr>
<td>5.11 Invariantive mechanics and interactions between bodies</td>
<td>81</td>
</tr>
<tr>
<td>5.12 One-body problem in invariantive mechanics</td>
<td>82</td>
</tr>
</tbody>
</table>

6. **The Photon in Invariantive Ondulatory Theories**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 The red shift</td>
<td>91</td>
</tr>
<tr>
<td>6.2 The photon deflection</td>
<td>92</td>
</tr>
<tr>
<td>6.3 Fermat’s principle. Gravitational retardation of light</td>
<td>95</td>
</tr>
</tbody>
</table>
7. **Lagrangian Approach in Invariantive Mechanics** 99
 7.1 Preliminaries ... 99
 7.2 Construction of the Lagrangian 100
 7.3 Infragalactic metrics 101
 7.4 Differential equation of infragalactic motion 103
 7.5 Planetary perihelion advance 105
 7.6 Deflection of light in gravitational field 105
 7.7 The red shift of spectral lines in strong gravitational fields 106
 7.8 Delay of laser echo 106

8. **Considerations on Invariantive Mechanics** 109
 8.1 Preliminaries .. 109
 8.2 Mass of gravitational interaction 113
 8.3 Hubble’s effect 114
 8.4 Invariantive model with epoch-dependent G 115
 8.5 Hubble’s effect in the high-speed approximation 117
 8.6 Invariantive models of the Universe 118
 8.7 Generalized Lorentz transformations. Critical mass of the universe 119
 8.8 Laws of variation of mass with time in invariantive mechanics 120

9. **Invariantive Mechanics of Rigid Body** 125
 9.1 General considerations 125
 9.2 Rigid body kinematics 125
 9.3 Inertia tensor of the rigid body 127
 9.4 Equations of motion of the rigid body 128
 9.5 Homogeneous and isotropic rigid body 132
 9.6 Rigid body with continuous mass distribution 134
 9.7 Eulerian rigid body 138
 9.8 Motion in a field of the rigid body 140
 9.9 Calculation of invariantive potentials 142
 9.10 Space of corpuscles 143
 9.11 Classification of corpuscles 145

10.1 Conservation laws for one material point 147
10.2 Equations of conservation for a discrete system of material points ... 148
10.3 Four-dimensional formulation of the conservation laws ... 150

11. Invariantive Mechanics and Informational Energy

11.1 Preliminaries ... 153
11.2 The group $SL(2R)$ and the canonical formalism ... 153
11.3 Informational entropy. Transitivity varieties 156
11.4 Onicescu informational energy and uncertainty relations ... 159
11.5 Onicescu informational energy of the harmonic oscillator ... 160
11.6 Onicescu informational energy of a system of coupled oscillators ... 162
11.7 Observable quantities and Onicescu informational energy ... 166
11.8 Onicescu informational energy of the free particle ... 167
11.9 Informational energy during the process of interaction neutron — crystal net ... 168
11.10 Onicescu informational energy and invariantive mechanics ... 176

References (Chapters 1–11) ... 177

12. Chaos Via Fractality in Gravitational Dynamical Systems

12.1 Introduction ... 181
12.2 Gravitational Maxwell-type equations ... 182
12.3 Equations of motion and their numerical solutions ... 185
12.4 Analysis of the Lyapunov exponent ... 196
Contents

12.5 Bifurcation diagram ... 200
12.6 Fractal analysis .. 203
12.7 Conclusions .. 206
References (Chapers 12) ... 206

13. Fractality at Small Scale. Fractal Model of the Atom 209
13.1 Introduction .. 209
13.2 Nottale’s model of the scale relativity theory 210
13.3 Extended model of the scale relativity 212
13.4 The dissipative approximation of motion in fractal structures. Fractal model of the atom 218
13.5 The dispersive approximation of motions in fractal structures. Some properties of the matter 225
References (Chapers 13) ... 232

14. Extended Fractal Hydrodynamic Model with an Arbitrary Fractal Dimension and its Implications 235
14.1 Introduction .. 235
14.2 Fractal hydrodynamic model for an arbitrary constant fractal dimension 238
14.3 Particle in a box in a fractal space-time 243
14.4 Harmonic oscillator in a fractal space-time 245
14.5 Free particle in the fractal space-time 249
14.6 Fractal conservation laws ... 258
14.7 Conclusions .. 263
References (Chapers 14) ... 265

15. Theory of Fractional Scale Relativity and Some Applications 269
15.1 Introduction .. 269
15.2 Basic mathematical tools and ideas 269
15.3 Fractional covariant mechanics induced by modified scale laws ... 272
15.4 Fractional Schrödinger equation and emergence of complex gravity 274
15.5 Scale relativity with fractional derivative for an arbitrary fractal dimension 276
References (Chapters 15) 279

Index 281