BRIEF CONTENTS

Part I THE MOLECULAR DESIGN OF LIFE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biochemistry: An Evolving Science</td>
</tr>
<tr>
<td>2</td>
<td>Protein Composition and Structure</td>
</tr>
<tr>
<td>3</td>
<td>DNA, RNA, and the Flow of Genetic Information</td>
</tr>
<tr>
<td>4</td>
<td>Exploring Genes and Genomes</td>
</tr>
<tr>
<td>5</td>
<td>Exploring Evolution and Bioinformatics</td>
</tr>
<tr>
<td>6</td>
<td>Hemoglobin: Portrait of a Protein in Action</td>
</tr>
<tr>
<td>7</td>
<td>Enzymes: Basic Concepts and Kinetics</td>
</tr>
<tr>
<td>8</td>
<td>Catalytic Strategies</td>
</tr>
<tr>
<td>9</td>
<td>Regulatory Strategies</td>
</tr>
<tr>
<td>10</td>
<td>Carbohydrates</td>
</tr>
<tr>
<td>11</td>
<td>Lipids and Cell Membranes</td>
</tr>
<tr>
<td>12</td>
<td>Membrane Channels and Pumps</td>
</tr>
<tr>
<td>13</td>
<td>Signal-Transduction Pathways</td>
</tr>
</tbody>
</table>

Part II TRANSDUCING AND STORING ENERGY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Metabolism: Basic Concepts and Design</td>
</tr>
<tr>
<td>16</td>
<td>Glycolysis and Gluconeogenesis</td>
</tr>
<tr>
<td>17</td>
<td>The Citric Acid Cycle</td>
</tr>
<tr>
<td>18</td>
<td>Oxidative Phosphorylation</td>
</tr>
<tr>
<td>19</td>
<td>The Light Reactions of Photosynthesis</td>
</tr>
<tr>
<td>20</td>
<td>The Calvin Cycle and the Pentose Phosphate Pathway</td>
</tr>
<tr>
<td>21</td>
<td>Glycogen Metabolism</td>
</tr>
<tr>
<td>22</td>
<td>Fatty Acid Metabolism</td>
</tr>
<tr>
<td>23</td>
<td>Protein Turnover and Amino Acid Catabolism</td>
</tr>
</tbody>
</table>

Part III SYNTHESIZING THE MOLECULES OF LIFE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>The Biosynthesis of Amino Acids</td>
</tr>
<tr>
<td>25</td>
<td>Nucleotide Biosynthesis</td>
</tr>
<tr>
<td>26</td>
<td>The Biosynthesis of Membrane Lipids and Steroids</td>
</tr>
<tr>
<td>27</td>
<td>The Integration of Metabolism</td>
</tr>
<tr>
<td>28</td>
<td>DNA Replication, Repair, and Recombination</td>
</tr>
<tr>
<td>29</td>
<td>RNA Synthesis and Processing</td>
</tr>
<tr>
<td>30</td>
<td>Protein Synthesis</td>
</tr>
<tr>
<td>31</td>
<td>The Control of Gene Expression in Prokaryotes</td>
</tr>
<tr>
<td>32</td>
<td>The Control of Gene Expression in Eukaryotes</td>
</tr>
</tbody>
</table>

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Sensory Systems</td>
</tr>
<tr>
<td>34</td>
<td>The Immune System</td>
</tr>
<tr>
<td>35</td>
<td>Molecular Motors</td>
</tr>
<tr>
<td>36</td>
<td>Drug Development</td>
</tr>
</tbody>
</table>

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>Part I THE MOLECULAR DESIGN OF LIFE</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Biochemical Unity Underlies Biological Diversity</td>
</tr>
<tr>
<td>1.2</td>
<td>DNA Illustrates the Interplay Between Form and Function</td>
</tr>
<tr>
<td>1.3</td>
<td>Concepts from Chemistry Explain the Properties of Biological Molecules</td>
</tr>
<tr>
<td>1.4</td>
<td>The Genomic Revolution Is Transforming Biochemistry, Medicine, and Other Fields</td>
</tr>
<tr>
<td>Part II TRANSDUCING AND STORING ENERGY</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>Proteins Are Built from a Repertoire of 20 Amino Acids</td>
</tr>
<tr>
<td>2.2</td>
<td>Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains</td>
</tr>
<tr>
<td>2.3</td>
<td>Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha Helix, the Beta Sheet, and Turns and Loops</td>
</tr>
</tbody>
</table>
Polypeptide chains can change direction by making reverse turns and loops 44
Fibrous proteins provide structural support for cells and tissues 44

2.4 Tertiary Structure: Water-Soluble Proteins Fold into Compact Structures with Nonpolar Cores 46
2.5 Quaternary Structure: Polypeptide Chains Can Assemble into Multisubunit Structures 48
2.6 The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure 49

Amino acids have different propensities for forming α helices, β sheets, and turns 51
Protein folding is a highly cooperative process 52
Proteins fold by progressive stabilization of intermediates rather than by random search 53
Prediction of three-dimensional structure from sequence remains a great challenge 54
Some proteins are inherently unstructured and can exist in multiple conformations 55
Protein misfolding and aggregation are associated with some neurological diseases 56
Protein modification and cleavage confer new capabilities 57

3.3 Mass Spectrometry Is a Powerful Technique for the Identification of Peptides and Proteins 85
Peptides can be sequenced by mass spectrometry 87
Proteins can be specifically cleaved into small peptides to facilitate analysis 88
Genomic and proteomic methods are complementary 89
The amino acid sequence of a protein provides valuable information 90
Individual proteins can be identified by mass spectrometry 91

3.4 Peptides Can Be Synthesized by Automated Solid-Phase Methods 92
3.5 Three-Dimensional Protein Structure Can Be Determined by X-ray Crystallography and NMR Spectroscopy 95
X-ray crystallography reveals three-dimensional structure in atomic detail 95
Nuclear magnetic resonance spectroscopy can reveal the structures of proteins in solution 97

CHAPTER 4 DNA, RNA, and the Flow of Genetic Information 105

4.1 A Nucleic Acid Consists of Four Kinds of Bases Linked to a Sugar–Phosphate Backbone 106
RNA and DNA differ in the sugar component and one of the bases 106
Nucleotides are the monomeric units of nucleic acids 107
DNA molecules are very long and have directionality 108
4.2 A Pair of Nucleic Acid Strands with Complementary Sequences Can Form a Double-Helical Structure 109
The double helix is stabilized by hydrogen bonds and van der Waals interactions 109
DNA can assume a variety of structural forms 111
Z-DNA is a left-handed double helix in which backbone phosphates zigzag 112
Some DNA molecules are circular and supercoiled 113
Single-stranded nucleic acids can adopt elaborate structures 113
4.3 The Double Helix Facilitates the Accurate Transmission of Hereditary Information 114
Differences in DNA density established the validity of the semiconservative replication hypothesis 115
The double helix can be reversibly melted 116
4.4 DNA Is Replicated by Polymerases That Take Instructions from Templates 117
DNA polymerase catalyzes phosphodiester-bridge formation 117
The genes of some viruses are made of RNA 118
4.5 Gene Expression Is the Transformation of DNA Information into Functional Molecules 119
Several kinds of RNA play key roles in gene expression 119
All cellular RNA is synthesized by RNA polymerases 120
RNA polymerases take instructions from DNA templates 121
Transcription begins near promoter sites and ends at terminator sites 122
Transfer RNAs are the adaptor molecules in protein synthesis 123

4.6 Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point 124
Major features of the genetic code 125
Messenger RNA contains start and stop signals for protein synthesis 126
The genetic code is nearly universal 126

4.7 Most Eukaryotic Genes Are Mosaics of Introns and Exons 127
RNA processing generates mature RNA 127
Many exons encode protein domains 128

CHAPTER 5 Exploring Genes and Genomes 135
5.1 The Exploration of Genes Relies on Key Tools 136
Restriction enzymes split DNA into specific fragments 137
Restriction fragments can be separated by gel electrophoresis and visualized 137
DNA can be sequenced by controlled termination of replication 138
DNA probes and genes can be synthesized by automated solid-phase methods 139
Selected DNA sequences can be greatly amplified by the polymerase chain reaction 141
PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution 142
The tools for recombinant DNA technology have been used to identify disease-causing mutations 143
5.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology 143
Restriction enzymes and DNA ligase are key tools in forming recombinant DNA molecules 143
Plasmids and λ phage are choice vectors for DNA cloning in bacteria 144
Bacterial and yeast artificial chromosomes 147
Specific genes can be cloned from digests of genomic DNA 147
Complementary DNA prepared from mRNA can be expressed in host cells 149
Proteins with new functions can be created through directed changes in DNA 150
Recombinant methods enable the exploration of the functional effects of disease-causing mutations 152
5.3 Complete Genomes Have Been Sequenced and Analyzed 152
The genomes of organisms ranging from bacteria to multicellular eukaryotes have been sequenced 153
The sequence of the human genome has been completed 154

Next-generation sequencing methods enable the rapid determination of a complete genome sequence 155
Comparative genomics has become a powerful research tool 156

5.4 Eukaryotic Genes Can Be Quantitated and Manipulated with Considerable Precision 157
Gene-expression levels can be comprehensively examined 157
New genes inserted into eukaryotic cells can be efficiently expressed 159
Transgenic animals harbor and express genes introduced into their germ lines 160
Gene disruption and genome editing provide clues to gene function and opportunities for new therapies 160
RNA interference provides an additional tool for disrupting gene expression 162
Tumor-inducing plasmids can be used to introduce new genes into plant cells 163
Human gene therapy holds great promise for medicine 164

CHAPTER 6 Exploring Evolution and Bioinformatics 169
6.1 Homologs Are Descended from a Common Ancestor 170
6.2 Statistical Analysis of Sequence Alignments Can Detect Homology 171
The statistical significance of alignments can be estimated by shuffling 173
Distant evolutionary relationships can be detected through the use of substitution matrices 174
Databases can be searched to identify homologous sequences 177
6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary Relationships 177
Tertiary structure is more conserved than primary structure 178
Knowledge of three-dimensional structures can aid in the evaluation of sequence alignments 179
Repeated motifs can be detected by aligning sequences with themselves 180
Convergent evolution illustrates common solutions to biochemical challenges 181
Comparison of RNA sequences can be a source of insight into RNA secondary structures 182
6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information 183
Horizontal gene transfer events may explain unexpected branches of the evolutionary tree 184
6.5 Modern Techniques Make the Experimental Exploration of Evolution Possible 185
Ancient DNA can sometimes be amplified and sequenced 185
Molecular evolution can be examined experimentally 185
CHAPTER 7 Hemoglobin: Portrait of a Protein in Action

7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme

- Changes in heme electronic structure upon oxygen binding are the basis for functional imaging studies.
- The structure of myoglobin prevents the release of reactive oxygen species.
- Human hemoglobin is an assembly of four myoglobin-like subunits.

7.2 Hemoglobin Binds Oxygen Cooperatively

- Oxygen binding markedly changes the quaternary structure of hemoglobin.
- Hemoglobin cooperativity can be potentially explained by several models.
- Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1-\alpha_2\beta_2$ interface.
- 2,3-Bisphosphoglycerate in red cells is crucial in determining the oxygen affinity of hemoglobin.
- Carbon monoxide can disrupt oxygen transport by hemoglobin.

7.3 Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect

7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease

- Sickle-cell anemia results from the aggregation of mutated deoxyhemoglobin molecules.
- Thalassemia is caused by an imbalanced production of hemoglobin chains.
- The accumulation of free alpha-hemoglobin chains is prevented.
- Additional globins are encoded in the human genome.

APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: The Hill Plot and the Concerted Model

CHAPTER 8 Enzymes: Basic Concepts and Kinetics

8.1 Enzymes Are Powerful and Highly Specific Catalysts

- Many enzymes require cofactors for activity.
- Enzymes can transform energy from one form into another.

8.2 Gibbs Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes

- The free-energy change provides information about the spontaneity but not the rate of a reaction.
- The standard free-energy change of a reaction is related to the equilibrium constant.
- Enzymes alter only the reaction rate and not the reaction equilibrium.

8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State

- The formation of an enzyme–substrate complex is the first step in enzymatic catalysis.
- The active sites of enzymes have some common features.
- The binding energy between enzyme and substrate is important for catalysis.

8.4 The Michaelis–Menten Model Accounts for the Kinetic Properties of Many Enzymes

- Kinetics is the study of reaction rates.
- The steady-state assumption facilitates a description of enzyme kinetics.
- Variations in K_M can have physiological consequences.
- K_M and V_{max} values can be determined by several means.
- K_M and V_{max} values are important enzyme characteristics.
- k_{cat}/K_M is a measure of catalytic efficiency.
- Most biochemical reactions include multiple substrates.
- Allosteric enzymes do not obey Michaelis–Menten kinetics.

8.5 Enzymes Can Be Inhibited by Specific Molecules

- The different types of reversible inhibitors are kinetically distinguishable.
- Irreversible inhibitors can be used to map the active site.
- Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis.
- Transition-state analogs are potent inhibitors of enzymes.
- Catalytic antibodies demonstrate the importance of selective binding of the transition state to enzymatic activity.

8.6 Enzymes Can Be Studied One Molecule at a Time

APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze

CHAPTER 9 Catalytic Strategies

9.1 Proteases Facilitate a Fundamentally Difficult Reaction

- Chymotrypsin possesses a highly reactive serine residue.
- Chymotrypsin action proceeds in two steps linked by a covalently bound intermediate.
- Serine is part of a catalytic triad that also includes histidine and aspartate.
- Catalytic triads are found in other hydrolytic enzymes.
- The catalytic triad has been dissected by site-directed mutagenesis.
- Cysteine, aspartyl, and metalloproteases are other major classes of peptide-cleaving enzymes.
- Protease inhibitors are important drugs.

A few basic catalytic principles are used by many enzymes.
9.2 Carbonic Anhydrases Make a Fast Reaction Faster 264
Carbonic anhydrase contains a bound zinc ion essential for catalytic activity 265
Catalysis entails zinc activation of a water molecule 265
A proton shuttle facilitates rapid regeneration of the active form of the enzyme 267

9.3 Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions 269
Cleavage is by in-line displacement of 3'-oxygen from phosphorus by magnesium-activated water 269
Restriction enzymes require magnesium for catalytic activity 271
The complete catalytic apparatus is assembled only within complexes of cognate DNA molecules, ensuring specificity 272
Host-cell DNA is protected by the addition of methyl groups to specific bases 274
Type II restriction enzymes have a catalytic core in common and are probably related by horizontal gene transfer 275

9.4 Myosins Harness Changes in Enzyme Conformation to Couple ATP Hydrolysis to Mechanical Work 275
ATP hydrolysis proceeds by the attack of water on the gamma-phosphoryl group 276
Formation of the transition state for ATP hydrolysis is associated with a substantial conformational change 277
The altered conformation of myosin persists for a substantial period of time 278
Scientists can watch single molecules of myosin move 279
Myosins are a family of enzymes containing P-loop structures 280

CHAPTER 10 Regulatory Strategies 285

10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 286
Allosterically regulated enzymes do not follow Michaelis-Menten kinetics 287
ATCase consists of separable catalytic and regulatory subunits 287
Allosteric interactions in ATCase are mediated by large changes in quaternary structure 288
Allosteric regulators modulate the T-to-R equilibrium 291

10.2 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental Stages 292

10.3 Covalent Modification Is a Means of Regulating Enzyme Activity 293
Kinases and phosphatases control the extent of protein phosphorylation 294
Phosphorylation is a highly effective means of regulating the activities of target proteins 296

Cyclic AMP activates protein kinase A by altering the quaternary structure 297
ATP and the target protein bind to a deep cleft in the catalytic subunit of protein kinase A 298

10.4 Many Enzymes Are Activated by Specific Proteolytic Cleavage 299
Chymotrypsinogen is activated by specific cleavage of a single peptide bond 299
Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site 300
The generation of trypsin from trypsinogen leads to the activation of other zymogens 301
Some proteolytic enzymes have specific inhibitors 302
Blood clotting is accomplished by a cascade of zymogen activations 303
Prothrombin requires a vitamin K-dependent modification for activation 304
Fibrinogen is converted by thrombin into a fibrin clot 304
Vitamin K is required for the formation of γ-carboxyglutamate 306
The clotting process must be precisely regulated 307
Hemophilia revealed an early step in clotting 308

CHAPTER 11 Carbohydrates 315

11.1 Monosaccharides Are the Simplest Carbohydrates 316
Many common sugars exist in cyclic forms 318
Pyranose and furanose rings can assume different conformations 320
Glucose is a reducing sugar 321
Monosaccharides are joined to alcohols and amines through glycosidic bonds 322
Phosphorylated sugars are key intermediates in energy generation and biosyntheses 322

11.2 Monosaccharides Are Linked to Form Complex Carbohydrates 323
Sucrose, lactose, and maltose are the common disaccharides 323
Glycogen and starch are storage forms of glucose 324
Cellulose, a structural component of plants, is made of chains of glucose 324

11.3 Carbohydrates Can Be Linked to Proteins to Form Glycoproteins 325
Carbohydrates can be linked to proteins through asparagine (N-linked) or through serine or threonine (O-linked) residues 326
The glycoprotein erythropoietin is a vital hormone 327
Glycosylation functions in nutrient sensing 327
Proteoglycans, composed of polysaccharides and protein, have important structural roles 327
Proteoglycans are important components of cartilage 328
Mucins are glycoprotein components of mucus 329
Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the Golgi complex 330
Specific enzymes are responsible for oligosaccharide assembly
Blood groups are based on protein glycosylation patterns
Errors in glycosylation can result in pathological conditions
Oligosaccharides can be “sequenced”

11.4 Lectins Are Specific Carbohydrate-Binding Proteins
Lectins promote interactions between cells
Lectins are organized into different classes
Influenza virus binds to sialic acid residues

12.6 Eukaryotic Cells Contain Compartments Bounded by Internal Membranes

CHAPTER 13 Membrane Channels and Pumps
The expression of transporters largely defines the metabolic activities of a given cell type

13.1 The Transport of Molecules Across a Membrane May Be Active or Passive
Many molecules require protein transporters to cross membranes
Free energy stored in concentration gradients can be quantified

13.2 Two Families of Membrane Proteins Use ATP Hydrolysis to Pump Ions and Molecules Across Membranes
P-type ATPases couple phosphorylation and conformational changes to pump calcium ions across membranes
Digitalis specifically inhibits the Na⁺-K⁺ pump by blocking its dephosphorylation
P-type ATPases are evolutionarily conserved and play a wide range of roles
Multidrug resistance highlights a family of membrane pumps with ATP-binding cassette domains

13.3 Lactose Permease Is an Archetype of Secondary Transporters That Use One Concentration Gradient to Power the Formation of Another

13.4 Specific Channels Can Rapidly Transport Ions Across Membranes
Action potentials are mediated by transient changes in Na⁺ and K⁺ permeability
Patch-clamp conductance measurements reveal the activities of single channels
The structure of a potassium ion channel is an archetype for many ion-channel structures
The structure of the potassium ion channel reveals the basis of ion specificity
The structure of the potassium ion channel explains its rapid rate of transport
Voltage gating requires substantial conformational changes in specific ion-channel domains
A channel can be inactivated by occlusion of the pore: the ball-and-chain model
The acetylcholine receptor is an archetype for ligand-gated ion channels
Action potentials integrate the activities of several ion channels working in concert
Disruption of ion channels by mutations or chemicals can be potentially life-threatening

13.5 Gap Junctions Allow Ions and Small Molecules to Flow Between Communicating Cells

13.6 Specific Channels Increase the Permeability of Some Membranes to Water
14.1 Heterotrimeric G Proteins Transmit Signals and Reset Themselves
Ligand binding to 7TM receptors leads to the activation of heterotrimeric G proteins
Activated G proteins transmit signals by binding to other proteins
Cyclic AMP stimulates the phosphorylation of many target proteins by activating protein kinase A
G proteins spontaneously reset themselves through GTP hydrolysis
Some 7TM receptors activate the phosphoinositide cascade
Calcium ion is a widely used second messenger

14.2 Insulin Signaling: Phosphorylation Cascades Are Central to Many Signal-Transduction Processes
The insulin receptor is a dimer that closes around a bound insulin molecule
Insulin binding results in the cross-phosphorylation and activation of the insulin receptor
The activated insulin-receptor kinase initiates a kinase cascade
Insulin signaling is terminated by the action of phosphatases

14.3 EGF Signaling: Signal-Transduction Pathways Are Poised to Respond
EGF binding results in the dimerization of the EGF receptor
The EGF receptor undergoes phosphorylation of its carboxyl-terminal tail
EGF signaling leads to the activation of Ras, a small G protein
Activated Ras initiates a protein kinase cascade
EGF signaling is terminated by protein phosphatases and the intrinsic GTPase activity of Ras

14.4 Many Elements Recur with Variation in Different Signal-Transduction Pathways
Activated carriers exemplify the modular design and economy of metabolism
Many activated carriers are derived from vitamins
Key reactions are reiterated throughout metabolism
Metabolic processes are regulated in three principal ways
Aspects of metabolism may have evolved from an RNA world

15.2 ATP Is the Universal Currency of Free Energy in Biological Systems
ATP hydrolysis is exergonic
ATP hydrolysis drives metabolism by shifting the equilibrium of coupled reactions
The high phosphoryl potential of ATP results from structural differences between ATP and its hydrolysis products
Phosphoryl-transfer potential is an important form of cellular energy transformation

15.3 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy
Compounds with high phosphoryl-transfer potential can couple carbon oxidation to ATP synthesis
Ion gradients across membranes provide an important form of cellular energy that can be coupled to ATP synthesis
Phosphates play a prominent role in biochemical processes
Energy from foodstuffs is extracted in three stages

15.4 Metabolic Pathways Contain Many Recurring Motifs
Activated carriers exemplify the modular design and economy of metabolism
Many activated carriers are derived from vitamins
Key reactions are reiterated throughout metabolism
Metabolic processes are regulated in three principal ways
Aspects of metabolism may have evolved from an RNA world

16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms
Hexokinase traps glucose in the cell and begins glycolysis
Fructose 1,6-bisphosphate is generated from glucose 6-phosphate
The six-carbon sugar is cleaved into two three-carbon fragments
Mechanism: Triose phosphate isomerase salvages a three-carbon fragment
The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential
Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate
ATP is formed by phosphoryl transfer from 1,3-biphosphoglycerate
Additional ATP is generated with the formation of pyruvate
Two ATP molecules are formed in the conversion of glucose into pyruvate
NAD\(^+\) is regenerated from the metabolism of pyruvate 462
Fermentations provide usable energy in the absence of oxygen 464
The binding site for NAD\(^+\) is similar in many dehydrogenases 465
Fructose is converted into glycolytic intermediates by fructokinase 465
Excessive fructose consumption can lead to pathological conditions 466
Galactose is converted into glucose 6-phosphate 466
Many adults are intolerant of milk because they are deficient in lactase 467
Galactose is highly toxic if the transferase is missing 468
16.2 The Glycolytic Pathway Is Tightly Controlled 469
Glycolysis in muscle is regulated to meet the need for ATP 469
The regulation of glycolysis in the liver illustrates the biochemical versatility of the liver 472
A family of transporters enables glucose to enter and leave animal cells 473
Aerobic glycolysis is a property of rapidly growing cells 474
Cancer and endurance training affect glycolysis in a similar fashion 476
16.3 Glucose Can Be Synthesized from Noncarbohydrate Precursors 476
Glucogenesis is not a reversal of glycolysis 478
The conversion of pyruvate into phosphoenolpyruvate begins with the formation of oxaloacetate 478
Oxaloacetate is shuffled into the cytoplasm and converted into phosphoenolpyruvate 480
The conversion of fructose 1,6-bisphosphate into fructose 6-phosphate and orthophosphate is an irreversible step 480
The generation of free glucose is an important control point 481
Six high-transfer-potential phosphoryl groups are spent in synthesizing glucose from pyruvate 481
16.4 Gluconeogenesis and Glycolysis Are Reciprocally Regulated 482
Energy charge determines whether glycolysis or gluconeogenesis will be most active 482
The balance between glycolysis and gluconeogenesis in the liver is sensitive to blood-glucose concentration 483
Substrate cycles amplify metabolic signals and produce heat 485
Lactate and alanine formed by contracting muscle are used by other organs 485
Glycolysis and gluconeogenesis are evolutionarily intertwined 487
17.2 The Citric Acid Cycle Oxidizes Two-Carbon Units 501
Citrate synthase forms citrate from oxaloacetate and acetyl coenzyme A 502
Mechanism: The mechanism of citrate synthase prevents undesirable reactions 502
Citrate is isomerized into isocitrate 504
Isocitrate is oxidized and decarboxylated to alpha-ketoglutarate 504
Succinyl coenzyme A is formed by the oxidative decarboxylation of alpha-ketoglutarate 505
A compound with high phosphoryl-transfer potential is generated from succinyl coenzyme A 505
Mechanism: Succinyl coenzyme A synthetase transforms types of biochemical energy 506
Oxaloacetate is regenerated by the oxidation of succinate 507
The citric acid cycle produces high-transfer-potential electrons, ATP, and CO\(_2\) 508
17.3 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled 510
The pyruvate dehydrogenase complex is regulated allosterically and by reversible phosphorylation 511
The citric acid cycle is controlled at several points 512
Defects in the citric acid cycle contribute to the development of cancer 513
17.4 The Citric Acid Cycle Is a Source of Biosynthetic Precursors 514
The citric acid cycle must be capable of being rapidly replenished 514
The disruption of pyruvate metabolism is the cause of beriberi and poisoning by mercury and arsenic 515
The citric acid cycle may have evolved from preexisting pathways 516
17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate 516

CHAPTER 18 Oxidative Phosphorylation 523
18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria 524
Mitochondria are bounded by a double membrane 524
Mitochondria are the result of an endosymbiotic event 525
18.2 Oxidative Phosphorylation Depends on Electron Transfer 526
The electron-transfer potential of an electron is measured as redox potential 526
A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient 528
18.3 The Respiratory Chain Consists of Four Complexes: Three Proton Pumps and a Physical Link to the Citric Acid Cycle 529
Iron–sulfur clusters are common components of the electron transport chain 531
The high-potential electrons of NADH enter the respiratory chain at NADH-Q oxidoreductase 532
Ubiquinol is the entry point for electrons from FADH2 of flavoproteins 533
Electrons flow from ubiquinol to cytochrome c through Q-cytochrome c oxidoreductase 533
The Q cycle funnels electrons from a two-electron carrier to a one-electron carrier and pumps protons 535
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water 535
Toxic derivatives of molecular oxygen such as superoxide radicals are scavenged by protective enzymes 538
Electrons can be transferred between groups that are not in contact 540
The conformation of cytochrome c has remained essentially constant for more than a billion years 541

18.4 A Proton Gradient Powers the Synthesis of ATP 541
ATP synthase is composed of a proton-conducting unit and a catalytic unit 543
Proton flow through ATP synthase leads to the release of tightly bound ATP: The binding-change mechanism 544
Rotational catalysis is the world’s smallest molecular motor 546
Proton flow around the c ring powers ATP synthesis 546
ATP synthase and G proteins have several common features 548

18.5 Many Shuttles Allow Movement Across Mitochondrial Membranes 549
Electrons from cytoplasmic NADH enter mitochondria by shuttles 549
The entry of ADP into mitochondria is coupled to the exit of ATP by ATP-ADP translocase 550
Mitochondrial transporters for metabolites have a common tripartite structure 551

18.6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP 552
The complete oxidation of glucose yields about 30 molecules of ATP 552
The rate of oxidative phosphorylation is determined by the need for ATP 553
ATP synthase can be regulated 554
Regulated uncoupling leads to the generation of heat 554
Oxidative phosphorylation can be inhibited at many stages 556
Mitochondrial diseases are being discovered 557
Mitochondria play a key role in apoptosis 557
Power transmission by proton gradients is a central motif of bioenergetics 558

19.2 Light Absorption by Chlorophyll Induces Electron Transfer 568
A special pair of chlorophylls initiate charge separation 569
Cyclic electron flow reduces the cytochrome of the reaction center 572

19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic Photosynthesis 572
Photosystem II transfers electrons from water to plastoquinone and generates a proton gradient 572
Cytochrome b6f links photosystem II to photosystem I 575
Photosystem I uses light energy to generate reduced ferredoxin, a powerful reductant 575
Ferredoxin-NADP+ reductase converts NADP+ into NADPH 576

19.4 A Proton Gradient across the Thylakoid Membrane Drives ATP Synthesis 578
The ATP synthase of chloroplasts closely resembles those of mitochondria and prokaryotes 578
The activity of chloroplast ATP synthase is regulated 579
Cyclic electron flow through photosystem I leads to the production of ATP instead of NADPH 580
The absorption of eight photons yields one O2, two NADPH, and three ATP molecules 581

19.5 Accessory Pigments Funnel Energy into Reaction Centers 581
Resonance energy transfer allows energy to move from the site of initial absorbance to the reaction center 582
The components of photosynthesis are highly organized 583
Many herbicides inhibit the light reactions of photosynthesis 584

19.6 The Ability to Convert Light into Chemical Energy Is Ancient 584
Artificial photosynthetic systems may provide clean, renewable energy 585

CHAPTER 19 The Light Reactions of Photosynthesis 565
Photosynthesis converts light energy into chemical energy 566

19.1 Photosynthesis Takes Place in Chloroplasts 567
The primary events of photosynthesis take place in thylakoid membranes 567

20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water 590
Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate 591
Rubisco activity depends on magnesium and carbamate 592
Rubisco activase is essential for rubisco activity 593
Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection 593
Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated 594
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose 597
Starch and sucrose are the major carbohydrate stores in plants 597

20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions 598

CHAPTER 19 The Light Reactions of Photosynthesis 565
Photosynthesis converts light energy into chemical energy 566

19.1 Photosynthesis Takes Place in Chloroplasts 567
The primary events of photosynthesis take place in thylakoid membranes 567

20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water 590
Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate 591
Rubisco activity depends on magnesium and carbamate 592
Rubisco activase is essential for rubisco activity 593
Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection 593
Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated 594
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose 597
Starch and sucrose are the major carbohydrate stores in plants 597

20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions 598
Rubisco is activated by light-driven changes in proton and magnesium ion concentrations 598
Thioredoxin plays a key role in regulating the Calvin cycle 599
The C4 pathway of tropical plants accelerates photosynthesis by concentrating carbon dioxide 599
Crassulacean acid metabolism permits growth in arid ecosystems 601

20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars 601
Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose 5-phosphate 602
The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase 602
Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms 605

20.4 The Metabolism of Glucose 6-Phosphate by the Pentose Phosphate Pathway Is Coordinated with Glycolysis 607
The rate of the pentose phosphate pathway is controlled by the level of NADP+ 607
The flow of glucose 6-phosphate depends on the need for NADPH, ribose 5-phosphate, and ATP 608
The pentose phosphate pathway is required for rapid cell growth 610
Through the looking-glass: The Calvin cycle and the pentose phosphate pathway are mirror images 610

20.5 Glucose 6-Phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive Oxygen Species 610
Glucose 6-phosphate dehydrogenase deficiency causes a drug-induced hemolytic anemia 610
A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some circumstances 612

CHAPTER 21 Glycogen Metabolism 617
Glycogen metabolism is the regulated release and storage of glucose 618

21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes 619
Phosphorylase catalyzes the phosphorolytic cleavage of glycogen to release glucose 1-phosphate 619
Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen 620
A debranching enzyme also is needed for the breakdown of glycogen 621
Phosphoglucomutase converts glucose 1-phosphate into glucose 6-phosphate 622
The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle 622

21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation 623
Liver phosphorylase produces glucose for use by other tissues 623
Muscle phosphorylase is regulated by the intracellular energy charge 625
Biochemical characteristics of muscle fiber types differ 625
Phosphorylation promotes the conversion of phosphorylase b to phosphorylase a 626
Phosphorylase kinase is activated by phosphorylation and calcium ions 626

21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown 627
G proteins transmit the signal for the initiation of glycogen breakdown 627
Glycogen breakdown must be rapidly turned off when necessary 629
The regulation of glycogen phosphorylase became more sophisticated as the enzyme evolved 629

21.4 Glycogen Is Synthesized and Degraded by Different Pathways 630
UDP-glucose is an activated form of glucose 630
Glycogen synthase catalyzes the transfer of glucose from UDP-glucose to a growing chain 630
A branching enzyme forms α-1,6 linkages 631
Glycogen synthase is the key regulatory enzyme in glycogen synthesis 632
Glycogen is an efficient storage form of glucose 632

21.5 Glycogen Breakdown and Synthesis Are Reciprocally Regulated 632
Protein phosphatase 1 reverses the regulatory effects of kinases on glycogen metabolism 633
Insulin stimulates glycogen synthesis by inactivating glycogen synthase kinase 635
Glycogen metabolism in the liver regulates the blood-glucose level 635
A biochemical understanding of glycogen-storage diseases is possible 637

CHAPTER 22 Fatty Acid Metabolism 643
Fatty acid degradation and synthesis mirror each other in their chemical reactions 644

22.1 Triacylglycerols Are Highly Concentrated Energy Stores 645
Dietary lipids are digested by pancreatic lipases 645
Dietary lipids are transported in chylomicrons 646

22.2 The Use of Fatty Acids as Fuel Requires Three Stages of Processing 647
Triacylglycerols are hydrolyzed by hormone-stimulated lipases 647
Free fatty acids and glycerol are released into the blood 648
Fatty acids are linked to coenzyme A before they are oxidized 648
Carnitine carries long-chain activated fatty acids into the mitochondrial matrix 649
Acetyl CoA, NADH, and FADH2 are generated in each round of fatty acid oxidation 650
The complete oxidation of palmitate yields 106 molecules of ATP

22.3 Unsaturated and Odd-Chain Fatty Acids Require Additional Steps for Degradation

An isomerase and a reductase are required for the oxidation of unsaturated fatty acids
Odd-chain fatty acids yield propionyl CoA in the final thiolysis step
Vitamin B₁₂ contains a corrin ring and a cobalt atom
Mechanism: Methylmalonyl CoA mutase catalyzes a rearrangement to form succinyl CoA
Fatty acids are also oxidized in peroxisomes
Ketone bodies are formed from acetyl CoA when fat breakdown predominates
Ketone bodies are a major fuel in some tissues
Animals cannot convert fatty acids into glucose
Some fatty acids may contribute to the development of pathological conditions

22.4 Fatty Acids Are Synthesized by Fatty Acid Synthase

Fatty acids are synthesized and degraded by different pathways
The formation of malonyl CoA is the committed step in fatty acid synthesis
Intermediates in fatty acid synthesis are attached to an acyl carrier protein
Fatty acid synthesis consists of a series of condensation, reduction, dehydration, and reduction reactions
Fatty acids are synthesized by a multifunctional enzyme complex in animals
The synthesis of palmitate requires 8 molecules of acetyl CoA, 14 molecules of NADPH, and 7 molecules of ATP
Citrate carries acetyl groups from mitochondria to the cytoplasm for fatty acid synthesis
Several sources supply NADPH for fatty acid synthesis
Fatty acid metabolism is altered in tumor cells

22.5 The Elongation and Unsaturation of Fatty Acids are Accomplished byAccessory Enzyme Systems

Membrane-bound enzymes generate unsaturated fatty acids
Eicosanoid hormones are derived from polyunsaturated fatty acids
Variations on a theme: Polyketide and nonribosomal peptide synthetases resemble fatty acid synthase

22.6 Acetyl CoA Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism

Acetyl CoA carboxylase is regulated by conditions in the cell
Acetyl CoA carboxylase is regulated by a variety of hormones

23.2 Protein Turnover Is Tightly Regulated

Ubiquitin tags proteins for destruction
The proteasome digests the ubiquitin-tagged proteins
The ubiquitin pathway and the proteasome have prokaryotic counterparts
Protein degradation can be used to regulate biological function

23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen

Alpha-amino groups are converted into ammonium ions by the oxidative deamination of glutamate
Mechanism: Pyridoxal phosphate forms Schiff-base intermediates in aminotransferases
Aspartate aminotransferase is an archetypal pyridoxal-dependent transaminase
Blood levels of aminotransferases serve a diagnostic function
Pyridoxal phosphate enzymes catalyze a wide array of reactions
Serine and threonine can be directly deaminated
Peripheral tissues transport nitrogen to the liver

23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates

The urea cycle begins with the formation of carbamoyl phosphate
Carbamoyl phosphate synthetase is the key regulatory enzyme for urea synthesis
Carbamoyl phosphate reacts with ornithine to begin the urea cycle
The urea cycle is linked to gluconeogenesis
Urea-cycle enzymes are evolutionarily related to enzymes in other metabolic pathways
Inherited defects of the urea cycle cause hyperammonemia and can lead to brain damage
Urea is not the only means of disposing of excess nitrogen

23.5 Carbon Atoms of Degraded Amino Acids Emerge as Major Metabolic Intermediates

Pyruvate is an entry point into metabolism for a number of amino acids
Oxaloacetate is an entry point into metabolism for aspartate and asparagine
Alpha-ketoglutarate is an entry point into metabolism for five-carbon amino acids
Succinyl coenzyme A is a point of entry for several nonpolar amino acids
Methionine degradation requires the formation of a key methyl donor, S-adenosylmethionine
The branched-chain amino acids yield acetyl CoA, acetoacetate, or propionyl CoA
Oxygenases are required for the degradation of aromatic amino acids

23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation

Phenylketonuria is one of the most common metabolic disorders
Determining the basis of the neurological symptoms of phenylketonuria is an active area of research
Part III SYNTHEZING THE MOLECULES OF LIFE

CHAPTER 24 The Biosynthesis of Amino Acids 713

Amino acid synthesis requires solutions to three key biochemical problems 714

24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia 714

- The iron–molybdenum cofactor of nitrogenase binds and reduces atmospheric nitrogen 715
- Ammonium ion is assimilated into an amino acid through glutamate and glutamine 717

24.2 Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways 719

- Human beings can synthesize some amino acids but must obtain others from their diet 719
- Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid 720
- A common step determines the chirality of all amino acids 721
- The formation of asparagine from aspartate requires an adenyalted intermediate 721
- Glutamate is the precursor of glutamine, proline, and arginine 722
- 3-Phosphoglycerate is the precursor of serine, cysteine, and glycine 722
- Tetrahydrofolate carries activated one-carbon units at several oxidation levels 723
- S-Adenosylmethionine is the major donor of methyl groups 724
- Cysteine is synthesized from serine and homocysteine 726
- High homocysteine levels correlate with vascular disease 726
- Shikimate and chorismate are intermediates in the biosynthesis of aromatic amino acids 727
- Tryptophan synthase illustrates substrate channeling in enzymatic catalysis 729

24.3 Feedback Inhibition Regulates Amino Acid Biosynthesis 730

- Branched pathways require sophisticated regulation 731
- The sensitivity of glutamine synthetase to allosteric regulation is altered by covalent modification 732

24.4 Amino Acids Are Precursors of Many Biomolecules 734

- Glutathione, a gamma-glutamyl peptide, serves as a sulfhydryl buffer and an antioxidant 734
- Nitric oxide, a short-lived signal molecule, is formed from arginine 735
- Porphyrins are synthesized from glycine and succinyl coenzyme A 736
- Porphyrins accumulate in some inherited disorders of porphyrin metabolism 737

CHAPTER 25 Nucleotide Biosynthesis 743

Nucleotides can be synthesized by de novo or salvage pathways 744

25.1 The Pyrimidine Ring Is Assembled de Novo or Recovered by Salvage Pathways 744

- Bicarbonate and other oxygenated carbon compounds are activated by phosphorylation 745
- The side chain of glutamine can be hydrolyzed to generate ammonia 745
- Intermediates can move between active sites by channeling 745
- Orotate acquires a ribose ring from PRPP to form a pyrimidine nucleotide and is converted into uridyate 746
- Nucleotide mono-, di-, and triphosphates are interconvertible 747
- CTP is formed by amination of UTP 747
- Salvage pathways recycle pyrimidine bases 748

25.2 Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways 748

- The purine ring system is assembled on ribose phosphate 749
- The purine ring is assembled by successive steps of activation by phosphorylation followed by displacement 749
- AMP and GMP are formed from IMP 751
- Enzymes of the purine synthesis pathway associate with one another in vivo 752
- Salvage pathways economize intracellular energy expenditure 752

25.3 Deoxyribonucleotides Are Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism 753

- Mechanism: A tyrosyl radical is critical to the action of ribonucleotide reductase 753
- Stable radicals other than tyrosyl radical are employed by other ribonucleotide reductases 755
- Thymidylate is formed by the methylation of deoxyuridylate 755
- Dihydrofolate reductase catalyzes the regeneration of tetrahydrofolate, a one-carbon carrier 756
- Several valuable anticancer drugs block the synthesis of thymidylate 756

25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition 758

- Pyrimidine biosynthesis is regulated by aspartate transcarbamoylase 758
- The synthesis of purine nucleotides is controlled by feedback inhibition at several sites 758
- The synthesis of deoxyribonucleotides is controlled by the regulation of ribonucleotide reductase 759

25.5 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions 760

- The loss of adenosine deaminase activity results in severe combined immunodeficiency 760
- Gout is induced by high serum levels of urate 761
- Lesch–Nyhan syndrome is a dramatic consequence of mutations in a salvage-pathway enzyme 761
- Folic acid deficiency promotes birth defects such as spina bifida 762
CHAPTER 26 The Biosynthesis of Membrane Lipids and Steroids

26.1 Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and Triacylglycerols

The synthesis of phospholipids requires an activated intermediate.

Some phospholipids are synthesized from an activated alcohol.

Phosphatidylcholine is an abundant phospholipid.

Excess choline is implicated in the development of heart disease.

Base-exchange reactions can generate phospholipids.

Sphingolipids are synthesized from ceramide.

Gangliosides are carbohydrate-rich sphingolipids that contain acidic sugars.

Sphingolipids confer diversity on lipid structure and function.

Respiratory distress syndrome and Tay-Sachs disease result from the disruption of lipid metabolism.

Ceramide metabolism stimulates tumor growth.

Phosphatidic acid phosphatase is a key regulatory enzyme in lipid metabolism.

26.2 Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages

The synthesis of mevalonate, which is activated as isopentenyl pyrophosphate, initiates the synthesis of cholesterol.

Squalene (C30) is synthesized from six molecules of isopentenyl pyrophosphate (C5).

Squalene cyclizes to form cholesterol.

26.3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels

Lipoproteins transport cholesterol and triacylglycerols throughout the organism.

Low-density lipoproteins play a central role in cholesterol metabolism.

The absence of the LDL receptor leads to hypercholesterolemia and atherosclerosis.

Mutations in the LDL receptor prevent LDL release and result in receptor destruction.

Cycling of the LDL receptor is regulated.

HDL appears to protect against atherosclerosis.

The clinical management of cholesterol levels can be understood at a biochemical level.

26.4 Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones

Letters identify the steroid rings and numbers identify the carbon atoms.

Steroids are hydroxylated by cytochrome P450 monooxygenases that use NADPH and O2.

The cytochrome P450 system is widespread and performs a protective function.

Pregnenolone, a precursor of many other steroids, is formed from cholesterol by cleavage of its side chain.

Progesterone and corticosteroids are synthesized from pregnenolone.

Androgens and estrogens are synthesized from pregnenolone.

Vitamin D is derived from cholesterol by the ring-splitting activity of light.

CHAPTER 27 The Integration of Metabolism

27.1 Caloric Homeostasis Is a Means of Regulating Body Weight

27.2 The Brain Plays a Key Role in Caloric Homeostasis

Signals from the gastrointestinal tract induce feelings of satiety.

Leptin and insulin regulate long-term control over caloric homeostasis.

Leptin is one of several hormones secreted by adipose tissue.

Leptin resistance may be a contributing factor to obesity.

Dieting is used to combat obesity.

27.3 Diabetes Is a Common Metabolic Disease Often Resulting from Obesity

Insulin initiates a complex signal-transduction pathway in muscle.

Metabolic syndrome often precedes type 2 diabetes.

Excess fatty acids in muscle modify metabolism.

Insulin resistance in muscle facilitates pancreatic failure.

Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess.

27.4 Exercise Beneficially Alters the Biochemistry of Cells

Mitochondrial biogenesis is stimulated by muscular activity.

Fuel choice during exercise is determined by the intensity and duration of activity.

27.5 Food Intake and Starvation Induce Metabolic Changes

The starved-fed cycle is the physiological response to a fast.

Metabolic adaptations in prolonged starvation minimize protein degradation.

27.6 Ethanol Alters Energy Metabolism in the Liver

Ethanol metabolism leads to an excess of NADH.

Excess ethanol consumption disrupts vitamin metabolism.

CHAPTER 28 DNA Replication, Repair, and Recombination

28.1 DNA Replication Proceeds by the Polymerization of Deoxyribonucleoside Triphosphates Along a Template
DNA polymerases require a template and a primer.
All DNA polymerases have structural features in common.
Two bound metal ions participate in the polymerase reaction.
The specificity of replication is dictated by complementarity of shape between bases.
An RNA primer synthesized by primase enables DNA synthesis to begin.
One strand of DNA is made continuously, whereas the other strand is synthesized in fragments.
DNA ligase joins ends of DNA in duplex regions.
The separation of DNA strands requires specific helicases and ATP hydrolysis.

28.2 DNA Unwinding and Supercoiling Are Controlled by Topoisomerases
The linking number of DNA, a topological property, determines the degree of supercoiling.
Topoisomerases prepare the double helix for unwinding.
Type I topoisomerases relax supercoiled structures.
Type II topoisomerases can introduce negative supercoils through coupling to ATP hydrolysis.

28.3 DNA Replication Is Highly Coordinated
DNA replication requires highly processive polymerases.
The leading and lagging strands are synthesized in a coordinated fashion.
DNA replication in Escherichia coli begins at a unique site.
DNA synthesis in eukaryotes is initiated at multiple sites.
Telomeres are unique structures at the ends of linear chromosomes.
Telomeres are replicated by telomerase, a specialized polymerase that carries its own RNA template.

28.4 Many Types of DNA Damage Can Be Repaired
Errors can arise in DNA replication.
Bases can be damaged by oxidizing agents, alkylating agents, and light.
DNA damage can be detected and repaired by a variety of systems.
The presence of thymine instead of uracil in DNA permits the repair of deaminated cytosine.
Some genetic diseases are caused by the expansion of repeats of three nucleotides.
Many cancers are caused by the defective repair of DNA.
Many potential carcinogens can be detected by their mutagenic action on bacteria.

28.5 DNA Recombination Plays Important Roles in Replication, Repair, and Other Processes
RecA can initiate recombination by promoting strand invasion.
Some recombination reactions proceed through Holliday-junction intermediates.

CHAPTER 29 RNA Synthesis and Processing
RNA synthesis comprises three stages: Initiation, elongation, and termination.

29.1 RNA Polymerases Catalyze Transcription
RNA chains are formed de novo and grow in the 5'-to-3' direction.
RNA polymerases backtrack and correct errors.
RNA polymerase binds to promoter sites on the DNA template to initiate transcription.
Sigma subunits of RNA polymerase recognize promoter sites.
RNA polymerases must unwind the template double helix for transcription to take place.
Elongation takes place at transcription bubbles that move along the DNA template.
Sequences within the newly transcribed RNA signal termination.
Some messenger RNAs directly sense metabolite concentrations.
The rho protein helps to terminate the transcription of some genes.
Some antibiotics inhibit transcription.
Precursors of transfer and ribosomal RNA are cleaved and chemically modified after transcription in prokaryotes.

29.2 Transcription in Eukaryotes Is Highly Regulated
Three types of RNA polymerase synthesize RNA in eukaryotic cells.
Three common elements can be found in the RNA polymerase II promoter region.
The TFIID protein complex initiates the assembly of the active transcription complex.
Multiple transcription factors interact with eukaryotic promoters.
Enhancer sequences can stimulate transcription at start sites thousands of bases away.

29.3 The Transcription Products of Eukaryotic Polymerases Are Processed
RNA polymerase I produces three ribosomal RNAs.
RNA polymerase III produces transfer RNA.
The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail.
Small regulatory RNAs are cleaved from larger precursors.
RNA editing changes the proteins encoded by mRNA.
Sequences at the ends of introns specify splice sites in mRNA precursors.
Splicing consists of two sequential transesterification reactions.
Small nuclear RNAs in spliceosomes catalyze the splicing of mRNA precursors.
Transcription and processing of mRNA are coupled.
Mutations that affect pre-mRNA splicing cause disease.
Most human pre-mRNAs can be spliced in alternative ways to yield different proteins.

29.4 The Discovery of Catalytic RNA was Revealing in Regard to Both Mechanism and Evolution
CHAPTER 30 Protein Synthesis

30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid Sequences

The synthesis of long proteins requires a low error frequency.
Transfer RNA molecules have a common design.
Some transfer RNA molecules recognize more than one codon because of wobble in base-pairing.

30.2 Aminoacyl Transfer RNA Synthetases Read the Genetic Code

Amino acids are first activated by adenylation.
Aminoacyl-tRNA synthetases have highly discriminating amino acid activation sites.
Proofreading by aminoacyl-tRNA synthetases increases the fidelity of protein synthesis.
Synthetases recognize various features of transfer RNA molecules.
Aminoacyl-tRNA synthetases can be divided into two classes.

30.3 The Ribosome Is the Site of Protein Synthesis

Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis.
Ribosomes have three tRNA-binding sites that bridge the 30s and 50s subunits.
The start signal is usually AUG preceded by several bases that pair with 16S rRNA.
Bacterial protein synthesis is initiated by formylmethionyl transfer RNA.
Formylmethionyl-tRNA_f is placed in the P site of the ribosome in the formation of the 70S initiation complex.
Elongation factors deliver aminoacyl-tRNA to the ribosome.
Peptidyl transferase catalyzes peptide-bond synthesis.
The formation of a peptide bond is followed by the GTP-driven translocation of tRNAs and mRNA.
Protein synthesis is terminated by release factors that read stop codons.

30.4 Eukaryotic Protein Synthesis Differs from Bacterial Protein Synthesis Primarily in Translation Initiation

Mutations in initiation factor 2 cause a curious pathological condition.

30.5 A Variety of Antibiotics and Toxins Can Inhibit Protein Synthesis

Some antibiotics inhibit protein synthesis.
Diphtheria toxin blocks protein synthesis in eukaryotes by inhibiting translocation.
Ricin fatally modifies 28S ribosomal RNA.

30.6 Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane Proteins

Protein synthesis begins on ribosomes that are free in the cytoplasm.
Signal sequences mark proteins for translocation across the endoplasmic reticulum membrane.
Transport vesicles carry cargo proteins to their final destination.

CHAPTER 31 The Control of Gene Expression in Prokaryotes

31.1 Many DNA-Binding Proteins Recognize Specific DNA Sequences

The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins.

31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons

An operon consists of regulatory elements and protein-encoding genes.
The lac repressor protein in the absence of lactose binds to the operator and blocks transcription.
Ligand binding can induce structural changes in regulatory proteins.
The operon is a common regulatory unit in prokaryotes.
Transcription can be stimulated by proteins that contact RNA polymerase.

31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression

The λ repressor regulates its own expression.
A circuit based on the λ repressor and Cro forms a genetic switch.
Many prokaryotic cells release chemical signals that regulate gene expression in other cells.
Biofilms are complex communities of prokaryotes.

31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels

Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure.

CHAPTER 32 The Control of Gene Expression in Eukaryotes

32.1 Eukaryotic DNA Is Organized into Chromatin

Nucleosomes are complexes of DNA and histones.
DNA wraps around histone octamers to form nucleosomes.

32.2 Transcription Factors Bind DNA and Regulate Transcription Initiation

A range of DNA-binding structures are employed by eukaryotic DNA-binding proteins.
Activation domains interact with other proteins.
Multiple transcription factors interact with eukaryotic regulatory regions.
Enhancers can stimulate transcription in specific cell types.
Induced pluripotent stem cells can be generated by introducing four transcription factors into differentiated cells.

32.3 The Control of Gene Expression Can Require Chromatin Remodeling
The methylation of DNA can alter patterns of gene expression.
Steroids and related hydrophobic molecules pass through membranes and bind to DNA-binding receptors.
Nuclear hormone receptors regulate transcription by recruiting coactivators to the transcription complex.
Steroid-hormone receptors are targets for drugs.
Chromatin structure is modulated through covalent modifications of histone tails.
Histone deacetylases contribute to transcriptional repression.

32.4 Eukaryotic Gene Expression Can Be Controlled at Posttranscriptional Levels
Genes associated with iron metabolism are translationally regulated in animals.
Small RNAs regulate the expression of many eukaryotic genes.

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction
Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors.
Odorants are decoded by a combinatorial mechanism.

33.2 Taste Is a Combination of Senses That Function by Different Mechanisms
Sequencing of the human genome led to the discovery of a large family of 7TM bitter receptors.
A heterodimeric 7TM receptor responds to sweet compounds.
Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related to the sweet receptor.
Salty tastes are detected primarily by the passage of sodium ions through channels.
Sour tastes arise from the effects of hydrogen ions (acids) on channels.

33.3 Photoreceptor Molecules in the Eye Detect Visible Light
Rhodopsin, a specialized 7TM receptor, absorbs visible light.
Light absorption induces a specific isomerization of bound 11-cis-retinal.
Light-induced lowering of the calcium level coordinates recovery.
Color vision is mediated by three cone receptors that are homologs of rhodopsin.
Rearrangements in the genes for the green and red pigments lead to "color blindness."

33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli
Hair cells use a connected bundle of stereocilia to detect tiny motions.
Mechanosensory channels have been identified in Drosophila and vertebrates.

33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors
Studies of capsaicin reveal a receptor for sensing high temperatures and other painful stimuli.

CHAPTER 34 The Immune System

Innate immunity is an evolutionarily ancient defense system.
The adaptive immune system responds by using the principles of evolution.

34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units
The immunoglobulin fold consists of a beta-sandwich framework with hypervariable loops.
X-ray analyses have revealed how antibodies bind antigens.
Large antigens bind antibodies with numerous interactions.

34.2 Antibodies Bind Specific Molecules Through Hypervariable Loops
The immunoglobulin fold consists of a beta-sandwich framework with hypervariable loops.

34.3 Diversity Is Generated by Gene Rearrangements
J (joining) genes and D (diversity) genes increase antibody diversity.
More than 10^9 antibodies can be formed by combinational association and somatic mutation.
The oligomerization of antibodies expressed on the surfaces of immature B cells triggers antibody secretion.
Different classes of antibodies are formed by the hopping of V families.

34.4 Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors
Peptides presented by MHC proteins occupy a deep groove flanked by alpha helices.
T-cell receptors are antibody-like proteins containing variable and constant regions.
CD8 on cytotoxic T cells acts in concert with T-cell receptors.
Helper T cells stimulate cells that display foreign peptides bound to class II MHC proteins.
Helper T cells rely on the T-cell receptor and CD4 to recognize foreign peptides on antigen-presenting cells.
MHC proteins are highly diverse.
Human immunodeficiency viruses subvert the immune system by destroying helper T cells.

34.5 The Immune System Contributes to the Prevention and the Development of Human Diseases
T cells are subjected to positive and negative selection in the thymus.
Autoimmune diseases result from the generation of immune responses against self-antigens.
CHAPTER 35 Molecular Motors 1011

35.1 Most Molecular-Motor Proteins Are Members of the P-Loop NTPase Superfamily 1012
Molecular motors are generally oligomeric proteins with an ATPase core and an extended structure 1012
ATP binding and hydrolysis induce changes in the conformation and binding affinity of motor proteins 1014

35.2 Myosins Move Along Actin Filaments 1016
Actin is a polar, self-assembling, dynamic polymer 1016
Myosin head domains bind to actin filaments 1018
Motions of single motor proteins can be directly observed 1018
Phosphate release triggers the myosin power stroke 1019
Muscle is a complex of myosin and actin 1019
The length of the lever arm determines motor velocity 1022

35.3 Kinesin and Dynein Move Along Microtubules 1022
Microtubules are hollow cylindrical polymers 1022
Kinesin motion is highly processive 1024

35.4 A Rotary Motor Drives Bacterial Motion 1026
Bacteria swim by rotating their flagella 1026
Proton flow drives bacterial flagellar rotation 1026
Bacterial chemotaxis depends on reversal of the direction of flagellar rotation 1028

CHAPTER 36 Drug Development 1033

36.1 The Development of Drugs Presents Huge Challenges 1034
Drug candidates must be potent and selective modulators of their targets 1035

36.2 Drug Candidates Can Be Discovered by Serendipity, Screening, or Design 1041
Serendipitous observations can drive drug development 1041
Natural products are a valuable source of drugs and drug leads 1043
Screening libraries of synthetic compounds expands the opportunity for identification of drug leads 1044
Drugs can be designed on the basis of three-dimensional structural information about their targets 1046

36.3 Analyses of Genomes Hold Great Promise for Drug Discovery 1048
Potential targets can be identified in the human proteome 1048
Animal models can be developed to test the validity of potential drug targets 1049
Potential targets can be identified in the genomes of pathogens 1050
Genetic differences influence individual responses to drugs 1050

36.4 The Clinical Development of Drugs Proceeds Through Several Phases 1051
Clinical trials are time consuming and expensive 1052
The evolution of drug resistance can limit the utility of drugs for infectious agents and cancer 1053

Answers to Problems A1

Selected Readings B1

Index C1