Handbook of
Antiblocking, Release, and Slip Additives
3rd Edition

George Wypych

ChemTec PUBLISHING

Toronto 2014
Table of Contents

1 Introduction
1.1 Historical developments
1.2 Expectations from commercial additives
1.3 Definitions
1.4 Classification

References

2 Generic Types
2.1 Introduction
2.2 Characteristic properties of commercial additives
2.2.1 Antiblocking agents
2.2.2 Mold release agents
2.2.3 Slip agents

References

3 Standard Methods of Control
3.1 Adhesives
3.2 Floor coverings
3.3 Footwear and walkway surfaces
3.4 Geosynthetics
3.5 Leather and coated fabrics
3.6 Lubricants
3.7 Medical
3.8 Paints and Coatings
3.9 Paper
3.10 Plastics and rubber
3.11 Roads and pavement
3.12 Sport equipment
3.13 Textiles

References

4 Transportation and Storage
4.1 Transportation
4.2 Storage

References

5 Mechanisms of Action
5.1 Antiblocking agents
5.2 Slip agents
5.3 Release agents

References

6 Compatibility and Performance

References
Table of Contents

7 **Diffusion and Migration**
7.1 Diffusion
7.2 Distribution of additive in bulk and on surface
7.3 How mobility affects additive selection?
7.4 Additive transfer to material in contact
7.5 Additive loss
References

8 **Interaction with Other Components of Formulation**
8.1 Fillers
8.2 Other components of formulation
8.3 Synergy between surface additives
8.4 Other properties
References

9 **Processing and Additive Performance**
References

10 **Effect on Product Properties**
10.1 Mechanical properties
10.2 Mar and abrasion
10.3 Shrinkage and warpage
10.4 Blocking force
10.5 Adhesion to mold and demolding
10.6 Coefficient of friction
10.7 Residues on molds
10.8 Residues on molded parts
10.9 Optical properties
10.10 Rheological properties
10.11 Electrical properties
10.12 Structure and orientation
10.13 Thermal aging
10.14 UV radiation
10.15 Effect on other properties
References

11 **Use in Specific Polymers**
11.1 ABS
11.2 Acrylics
11.3 Bromobutyl rubber
11.4 Cellulose acetate
11.5 Cellulose, acetate, butyrate and propionate
11.6 Cellulose nitrate
11.7 Chlorinated polyvinylchloride
11.8 Chlorosulfonated polyethylene
11.9 Copolymers
11.10 Cyanoacrylates
11.11 Ethyl cellulose
References
11.12 Ethylene-propylene-diene copolymer, EPDM 146

11.13 Ethylene-propylene rubber, EPR 148

11.14 Epoxy resin 149

11.15 Ethylene-vinyl acetate copolymer, EVA 151

11.16 Ionomers 153

11.17 Nitrile rubber 153

11.18 Polyamide 154

11.19 Polybutadiene 155

11.20 Polycarbonate 156

11.21 Polyester 157

11.22 Polyetherimide 161

11.23 Polyethylene 162

11.24 Polyimide 169

11.25 Polylactide 170

11.26 Polymethylmethacrylate 171

11.27 Polyoxymethylene 172

11.28 Poly(N-vinylcarbazole) 173

11.29 Polyphenylene ether 174

11.30 Polypropylene 175

11.31 Polystyrene 178

11.32 Polysulfone 180

11.33 Poly(phenylene sulfide) 180

11.34 Polyvinylacetate 181

11.35 Polyvinylalcohol 181

11.36 Polyvinylbutyral 182

11.37 Polyvinylchloride 183

11.38 Polyurethanes 184

11.39 Proteins 188

11.40 Rubber, natural 188

11.41 Silicone 189

11.42 Styrene-butadiene rubber 190

11.43 Styrene-butadiene-styrene 191

11.44 Starch 192

References

192

12 Use in Industrial Products 201

12.1 Adhesives and sealants 201

12.2 Aerospace 203

12.3 Agriculture 204

12.4 Automotive applications 206

12.5 Bottles 208

12.6 Ceramic materials 210

12.7 Composites 211

12.8 Coated fabrics 211

12.9 Cosmetics 213

12.10 Dental materials 213

12.11 Electronics 214

12.12 Fibers 216

12.13 Film 217
12.14 Food 227
12.15 Foams 228
12.16 Gaskets 230
12.17 Inks, varnishes, and lacquers 231
12.18 Medical devices 232
12.19 Membranes 232
12.20 Paints and coatings 233
12.21 Pharmaceutical products 234
12.22 Photographic materials 235
12.23 Pipes 237
12.24 Road construction 238
12.25 Roofing materials 238
12.26 Synthetic paper 239
12.27 Tires 239
12.28 Toys 241
12.29 Wire & cable 241

References 242

13 Various Processing Methods 249
13.1 Blow molding 249
13.2 Calendering 251
13.3 Coextrusion 251
13.4 Compression molding 253
13.5 Compounding (mixing) 256
13.6 Dip coating 257
13.7 Dryblending 259
13.8 Extrusion 261
13.9 Extrusion blow molding 264
13.10 Injection molding 266
13.11 Lithography 269
13.12 Printing 270
13.13 Reaction injection molding 273
13.14 Rotational molding 274
13.15 Rubber processing 275
13.16 Slip casting 277
13.17 Thermoforming 277
13.18 Transfer molding 278

References 278

14 Specialized Analytical Methods 283
14.1 Identification 283
14.2 Determination of concentration 284
14.3 Determination of volatility and molecular motion 286
14.4 Study of materials containing additives 287

References 289

15 Mathematical Modelling 293

References 295
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Health, Safety and Environmental Issues</td>
<td>297</td>
</tr>
<tr>
<td>16.1</td>
<td>Antiblocking agents</td>
<td>297</td>
</tr>
<tr>
<td>16.2</td>
<td>Release agents</td>
<td>300</td>
</tr>
<tr>
<td>16.3</td>
<td>Slip agents</td>
<td>302</td>
</tr>
<tr>
<td>17</td>
<td>Regulations and Data</td>
<td>305</td>
</tr>
<tr>
<td>17.1</td>
<td>Toxic substance control</td>
<td>305</td>
</tr>
<tr>
<td>17.2</td>
<td>Carcinogenic effect</td>
<td>307</td>
</tr>
<tr>
<td>17.3</td>
<td>Workplace exposure limits</td>
<td>308</td>
</tr>
<tr>
<td>17.4</td>
<td>Food regulatory acts</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td>18</td>
<td>Personal Protection</td>
<td>313</td>
</tr>
<tr>
<td>18.1</td>
<td>Clothing</td>
<td>313</td>
</tr>
<tr>
<td>18.2</td>
<td>Gloves</td>
<td>314</td>
</tr>
<tr>
<td>18.3</td>
<td>Eye protection</td>
<td>316</td>
</tr>
<tr>
<td>18.4</td>
<td>Respiratory protection</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>321</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>323</td>
</tr>
</tbody>
</table>