Contents

Volume 1

Foreword XV
Acknowledgment XVII
List of Contributors XIX
Introduction XXVII

Part I Nanotechnology Research Funding and Commercialization
Prospects – Political, Social and Economic Context for the Science and Application of Nanotechnology 1

1 A European Strategy for Micro- and Nanoelectronic Components and Systems 3
 Neelie Kroes
 1.1 Introduction 3
 1.2 Why are Micro- and Nanoelectronics Essential for Europe? 4
 1.2.1 An Important Industry with a Significant Potential for Growth and a Massive Economic Footprint 4
 1.2.2 A Key Technology for Addressing the Societal Challenges 4
 1.3 A Changing Industrial Landscape for Micro- and Nanoelectronics 5
 1.3.1 Technology Progress Opens New Opportunities 5
 1.3.2 Escalating R&D&I Costs and a More Competitive R&D&I Environment 5
 1.3.3 New Business and Production Models 6
 1.3.4 Equipment Manufacturers Own Key Elements of the Value Chain 7
 1.4 Europe’s Strengths and Weaknesses 7
 1.4.1 Industry Structured around Centers of Excellence and Wider Supply Chains Covering all Europe 7
 1.4.2 Leading in Essential Vertical Markets, Almost Absent in Some Large Segments 8
 1.4.3 Undisputed European Leadership in Materials and Equipment 8
1.4.4 Investments of EU Companies Remain Relatively Modest 9
1.5 European Efforts So Far 9
1.5.1 Regional and National Efforts Reinforcing the Clusters of Excellence 9
1.5.2 A Growing and More Coordinated Investment in R&D&I at EU Level 9
1.5.3 Technology Breakthroughs but Gaps in the Innovation Chain 10
1.6 The Way Forward – A European Industrial Strategy 10
1.6.1 Objective: Reverse the Decline of EU's Share of World's Supply 10
1.6.2 Focus on Europe's Strengths, Build on and Reinforce Europe's Leading Clusters 11
1.6.3 Seize Opportunities Arising in Non-conventional Fields and Support SMEs Growth 11
1.7 The Actions 12
1.7.1 Towards a European Strategic Roadmap for Investment in the Field 12
1.7.2 The Joint Technology Initiative: A Tripartite Model for Large-Scale Projects 13
1.7.3 Building on and Supporting Horizontal Competitiveness Measures 15
1.7.4 International Dimension 15
1.8 Conclusions 16
1.8.1 Annex 1.A 16
2 Governmental Strategy for the Support of Nanotechnology in Germany 19
Gerd Bachmann and Leif Brand
2.1 Introduction 19
2.2 Future Options 20
2.3 From Basic Science Funding to the Nanotechnology Action Plan 21
2.4 Funding Situation 2011 24
2.5 Patent Applications in Nanotechnology: An International Comparison 24
2.6 Innovation Accompanying Measures 27
2.6.1 Outreach and Citizen Dialogues 27
2.6.2 Chances – Risks Communication 28
2.6.3 Database for Nanomaterials 28
2.6.4 Education 29
2.7 Involved Organizations 30
2.8 Cooperation of the Governmental Bodies 31
2.9 International Cooperation 32
2.9.1 Research Marketing 33
2.9.2 Activities within the Framework of the European Union 33
4.6.1 Historical Background 69
4.6.2 Research Project 69
4.6.3 Conclusion 72
4.7 Polymeric Micelles for Cancer Therapy 72
4.7.1 Background and Present Status 72
4.7.2 Polymeric Micelles as Nanocarriers 72
4.7.3 Perspectives to Industrialization 73
4.7.4 Conclusions 74
4.8 Nanoparticulate Vaccine Adjuvants and Delivery Systems 75
4.8.1 Introduction 75
4.8.2 The Role of Nanotechnology in Vaccine Developments 75
4.8.3 Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems 76
4.8.4 Clinical Application of Particulate Vaccine Adjuvants 77
4.8.5 Conclusions 77
References 77

5 Quo Vadis Nanotechnology? 79
Witold Lojkowski, Hans-Jörg Fecht, and Anna Swiderska Środa
5.1 Introduction 79
5.2 What is Nanotechnology? 80
5.3 Quo Vadis Nanotechnology – In Academia? 82
5.4 Quo Vadis Nanotechnology – In Industry Eyes? 85
5.5 Quo Vadis Nanotechnology – In Governments’ and Funding Agencies’ Eyes? 86
5.6 Quo Vadis Nanotechnology – In the World of Regulations, Laws and Standards? 87
5.7 Quo Vadis Nanotechnology – In Society’s Eyes? 89
5.8 Effect of Education on Nanotechnology Development 90
5.9 Conclusions 91
5.10 Limitations of the Chapter 93
Acknowledgements 93
References 93

Part II Development of Micro and Nanotechnologies 95

6 Micro/Nanoroughness Structures on Superhydrophobic Polymer Surfaces 97
Jared J. Victor, Uwe Erb, and Gino Palumbo
6.1 Introduction 97
6.3 Basic Wetting Properties 99
6.4 Advanced Wetting Properties 100
6.5 Aspen Leaves as a Biological Blueprint 101
6.6 Template Design 103
6.7 Polymer Pressing 107
6.8 Process Scalability 109
6.9 Conclusions 111
Acknowledgments 112
References 112

7 Multisensor Metrology Bridging the Gap to the Nanometer – New Measurement Requirements and Solutions in Wafer-Based Production 115
Thomas Fries
7.1 Unflexible Metrology Solutions are Inefficient 115
7.2 The Solution is Named Multisensor Metrology 116
7.3 Basic Setup of a Multisensor Metrology Tool 118
7.4 Different Measuring Technologies Available 118
7.5 Metrology on Wafers has Reached the Third Dimension 123
7.6 Roughness Measurement 124
7.7 Geometrical Data – TTV, Bow, Warp, and So On 124
7.8 Nanotopography 128
7.9 TSV Measurement 130
7.10 Film Thickness and Stack Layer Thickness 132
7.11 Summary 133
References 134

8 Nanostructural Metallic Materials – Nanoengineering and Nanomanufacturing 135
Michael E. Fitzpatrick, Francisca G. Caballero, and Marcel H. Van de Voorde
8.1 Introduction 135
8.2 Nanometallics and Nanomaterials 136
8.2.1 Nanomaterials Science and Engineering 136
8.2.2 Nanocrystalline and Nanostructured Metals 137
8.3 Production and Manufacturing of Nanometallic Materials 139
8.3.1 Processing Routes for Nanometallic Materials 139
8.3.2 Primary Production 140
8.3.3 Secondary Processing 141
8.3.4 Nanoengineering in the Modern Steel Industry 142
8.3.5 Metal Matrix Nanocomposites 145
8.3.6 The Future of Nanometallic Materials 145
8.4 Nanomaterials Engineering – Issues and Properties 146
8.4.1 Mechanical Properties of Materials and Assemblies 147
8.4.2 Joining of Nanometallic Materials 147
8.4.3 Characterization of Properties under Operating Conditions 148
8.4.4 Design Principle for Nanotechnology Engineering 149
8.5 Analytical Techniques for the Study of Nano- and Micromechanics 149
8.5.1 Neutron and Synchrotron X-Ray Techniques 151
Contents

Part III Nanoelectronics and System Integration 205

11 Creating Tomorrow’s Applications through Deeper Collaboration between Technology and Design 207

Jan Provoost, Diederik Verkest, and Gilbert Declerck

11.1 Introduction 207
11.2 A Holistic Approach – Imec’s INSITE Program 208
11.3 Bottom-Up – Designing Tomorrow’s Manufacturable Technology 210
11.3.1 Modelling the Cost of Future Technology with and without EUV Lithography 211
11.3.2 Developing PDKs and Test Chips for Advanced Nodes 212
11.3.3 Looking for Optimal SRAM Memory Cells 213
11.3.4 Designing Sophisticated 3D Test Chips 214
11.3.5 Optical Data Paths Between and on Chips 215
11.3.6 New Materials and Transistors for Next-Generation Chips 216
11.4 Top-Down – Designing Future Nanoelectronic Applications 217
11.4.1 Designing a New Toolbox for the Life Sciences 218
11.4.1.1 The Vision 218
11.4.1.2 A Tool to Detect Circulating Tumor Cells 218
11.4.2 Designing Next-Generation Wireless Radios 219
11.4.2.1 The Vision 219
11.4.2.2 SCALDIO: A Highly Reconfigurable Radio Transceiver 220
11.4.3 Designing a Microsized Hyperspectral Camera 221
11.4.3.1 The Vision 221
11.4.3.2 The Challenge: A Mass-Produced, Microsized HSI 221
11.5 Conclusion 222

References 223

12 Multiwalled Carbon Nanotube Network-Based Sensors and Electronic Devices 225

Wolfgang R. Fahrner, Giovanni Landi, Raffaele Di Giacomo, and Heinz C. Neitzert

12.1 Introduction 225
12.2 CNN without Matrix 226
12.3 Crystalline Silicon/Polymer Heterojunctions with and without CNTs for Applications as Diodes, Solar Cells, and Electrical Memories 230
12.3.1 PEDOT:PSS with and without CNTs on Crystalline Silicon for Photovoltaic Applications 230
12.3.2 PMMA with MWCNTs on c-Si Heterodiodes 233
12.3.3 Polymerized Oxadiazole/Crystalline Silicon Heterojunction as Electrical Memory Element 234
12.4 Bio-Nanocomposites with CNTs and Fungal Cells with Sensing Capability 236
12.5 Conclusions 238
Acknowledgments 239
References 239

13 Thin Film Piezomaterials for Bulk Acoustic Wave Technology 243
Jyrki Molaris, Tommi Riekkinen, Martin Kulawski, and Markku Ylilammi
13.1 Introduction 243
13.2 Zinc Oxide (ZnO) 244
13.3 Aluminum Nitride (AlN) 252
13.3.1 Layer Transfer Method 256
13.4 Scandium-Alloyed Aluminum Nitride (Sc:AlN) 257
13.5 Lead Zirconate Titanate (PZT) 261
13.6 Lead-Free Piezoelectric Materials 262
13.7 Future Trends and Applications 263
13.8 Conclusions 264
Acknowledgments 265
References 265

14 Properties and Applications of Ferroelectrets 271
Xunlin Qiu, Dmitry Rychkov, and Werner Wirges
14.1 Introduction 271
14.2 Preparation of Polymer Foams or Void-Containing Polymer Systems 272
14.2.1 Polymer Foams 272
14.2.2 Void-Containing Polymer Systems 274
14.3 Charging Process 276
14.3.1 Dielectric Barrier Discharges in Cavities 276
14.3.2 Polarization versus Electric-Field Hysteresis 277
14.4 Piezoelectricity of Ferroelectrets and Its Stability 278
14.5 Applications 280
14.5.1 Concept for Focusing Ultrasound 281
14.5.2 Ferroelectret Microphone 282
14.5.3 Control Panels and Keyboards 283
14.6 Conclusions 284
References 285