Contents

Preface xvii
Principal Symbols xxi
List of Acronyms xxix

1 Properties of Radiation 1
 1.1 Preamble 1
 1.1.1 Planck's Law 11
 1.1.2 Stefan–Boltzmann's Law 15
 1.1.3 Effective Temperature of a Star 17
 1.1.4 Wien's Law 20
 1.1.5 Color Temperature 21
 1.1.6 Electromagnetic Spectrum 25
 1.2 Light Intensity 29
 1.2.1 Radiometry 30
 1.2.2 Photometry 35
 1.2.3 Lambert's Cosine Law 37
 1.3 Opto-Electronic System Theory 38
 1.3.1 Linear System 39
 1.3.2 Transfer Functions of Optical and Opto-Electronics Systems 43
 1.4 Image Formation 45
 1.4.1 Electro-Optical System 48
 1.4.2 Photographic Film 50
 1.5 Effects of Atmosphere on the Star Images 51
 1.5.1 Absorption 52
 1.5.2 Scattering 55
 1.5.3 Atmospheric Turbulence 57
 1.5.4 Resolving Power of a Telescope 63
3 Concept of Laser 145

3.1 Introduction 145

3.2 Main Characteristics 146

3.2.1 Coherent Beam 146

3.2.1.1 Temporal coherence 147

3.2.1.2 Spatial coherence 148

3.2.2 Spatial Filter 151

3.2.3 Beam Expansion 154

3.2.4 Output Power 155

3.3 Principles of Emission 156

3.3.1 Induced Absorption 156

3.3.2 Spontaneous Emission 157

3.3.3 Stimulated Emission 160

3.3.4 Population Inversion 162

3.3.5 Emission Line-Width 164

3.3.5.1 Doppler broadening 164

3.3.5.2 Natural broadening 166

3.3.5.3 Collisional broadening 167

3.3.6 Principal Components of a Laser 169

3.3.7 Laser Systems 171

3.3.7.1 Gas lasers 171

3.3.7.2 Dye lasers 173

3.3.7.3 Optically pumped solid-state lasers 173

3.3.8 Semiconductor Diode Laser 175

3.3.8.1 Light-emitting diode 175

3.3.8.2 Laser diode 176

3.4 Fiber-Optics 178

3.4.1 Principle of Operation 178

3.4.1.1 Numerical aperture 180

3.4.1.2 Relative core-cladding index difference 180

3.4.2 Types of Fibers 181

3.4.3 Fiber Laser 183

3.4.4 Applications of Optical Fibers 185

3.4.4.1 Fibers used at telescopes 186

3.4.4.2 Fibers used for interferometry 187

3.4.5 Drawback of fibers 189
3.4.5.1 Absorption loss 189
3.4.5.2 Radiative loss 191
3.4.5.3 Dispersion 192
3.4.5.4 Losses due to miscellaneous sources 195

3.5 Light Sources and Illumination Systems 197
3.5.1 Lens-Based Light Source 197
3.5.2 Laser as a Light Source 200
3.5.3 Laser Interferometer Gravitational-wave Observatory 204
3.5.4 Laser Guide Star 206

4 Photon Detection Process 209
4.1 Radiation Detectors 209
4.1.1 Figure of Merit 211
4.1.1.1 Spectral bandwidth 213
4.1.1.2 Responsivity 214
4.1.1.3 Quantum efficiency 216
4.1.1.4 Detectivity 219
4.1.1.5 Frequency response 220
4.1.1.6 Response time 221
4.1.1.7 Dynamic range 223
4.1.1.8 Dark current 224
4.1.2 Detection of Photoevent 225

4.2 Mechanism of Photon Detection 226
4.2.1 The Human Eye 226
4.2.1.1 Structure of the eye 227
4.2.1.2 Operation of the eye 235
4.2.2 Photography 238
4.2.3 Micro-Photometer 240

4.3 Photon Detectors 241
4.3.1 Photon Effects 242
4.3.1.1 Internal photon effects 244
4.3.1.2 External photon effects 248
4.3.1.3 Other photon effects 248
4.3.1.4 Wave interaction effects 249
4.3.2 General Requirements of an Ideal Detector 251
4.3.2.1 Photocurrent 251
4.3.2.2 Gain 252
4.4 System Analysis
 4.4.1 Principal Performance Functions 254
 4.4.1.1 Limiting resolution 254
 4.4.1.2 Non-linearity 255
 4.4.1.3 Spectral response 256
 4.4.1.4 Field-of-view 256
 4.4.2 Limits on Radiation Detector Sensitivity 257
4.5 Noise 258
 4.5.1 Radiation Noise 258
 4.5.1.1 Photon signal fluctuation limit 259
 4.5.1.2 Background photon fluctuation limit 260
 4.5.2 Intrinsic Detector Noise 264
 4.5.2.1 Thermal noise 264
 4.5.2.2 Generation-recombination noise 265
 4.5.2.3 Quantum (Shot) noise 266
 4.5.2.4 Flicker noise (1/f-noise) 269
 4.5.2.5 Dark current noise 271
 4.5.3 Amplifier Noise 272
 4.5.4 Read-Out Noise 273
 4.5.5 Noise Figure 274
 4.5.5.1 Noise accumulation in photoelectric system 277
 4.5.5.2 MTF measurements in a photoelectric system 277

5 Photodetectors 279
 5.1 Photodetector Elements 279
 5.2 Photoemissive Devices 280
 5.2.1 Photoemissive Surfaces 283
 5.2.1.1 Classical photoemissive surface 283
 5.2.1.2 Negative electron affinity photoemissive surface 286
 5.2.1.3 Types of photocathodes 288
 5.2.2 Photomultiplier 289
 5.2.3 Development of PMT 295
 5.2.4 Astronomical Applications of PMTs 296
 5.2.4.1 Photometer 297
 5.2.4.2 Interferometric applications of PMTs 301
6.2.3 CCD Camera System
 6.2.3.1 Dewar
 6.2.3.2 CCD controller
6.2.4 Read-Out Procedure
6.2.5 Characteristic Features
 6.2.5.1 Charge transfer efficiency
 6.2.5.2 Quantum efficiency
 6.2.5.3 Dynamic range
 6.2.5.4 Gain
 6.2.5.5 Responsivity
 6.2.5.6 Dark current
6.2.6 Calibration of CCD
 6.2.6.1 Sources of non-uniformities
 6.2.6.2 Flat-field corrections
6.3 CMOS Sensor
6.4 Intensified CCD

7 Photon-Counting Systems
 7.1 Introduction
 7.2 Photon-Counting Methods
 7.2.1 Detection of Photoelectrons
 7.2.2 Necessity of Photon-Counting Systems
 7.3 Genesis of Photon-Counting Detectors
 7.3.1 Initial Experiments
 7.3.2 Image Photon-Counting Device
 7.4 PMT-Based Photon-Counting System
 7.4.1 Digicon
 7.4.2 Precision Analog Photon Address
 7.4.3 Position-Sensing Detector
 7.5 MCP-Based Photon-Counting systems
 7.5.1 Special Anode Cameras
 7.5.1.1 Wedge-and-strip anodes detector
 7.5.1.2 Resistive-anode position sensing detector
 7.5.2 Multi-Anode Micro-Channel Array
 7.5.3 Delay-Line Anode
7.6 Charge Transfer Device-Based Photon-Counting Systems
7.6.1 CP40 441
7.6.2 CMOS-Based Photon-Counting Detector 447

7.7 Solid-State Technologies
7.7.1 Low-Light Level CCD 449
7.7.2 Superconducting Tunnel Junction 456
7.7.3 APD-Based Photon-Counting System 457

8 Radiation Detectors for Infrared Wavelengths 461
8.1 Atmospheric Transmission Windows 461
8.2 Infrared Astronomy 464
8.2.1 Ground-Based IR Observations 468
8.2.2 Space-Based IR Observations 471
8.3 Thermal Detectors 472
8.3.1 Thermal Effects 473
8.3.2 General Characteristics of Thermal Detector 475
8.3.3 Bolometers 478
8.3.4 Thermopiles 481
8.3.4.1 Golay cells 481
8.3.4.2 Pyroelectric detectors 482
8.3.5 Thermal Imagers 483
8.4 IR Detectors 485
8.4.1 Evolution of IR Detectors 486
8.4.2 Emerging Trends in IR Detectors 487
8.5 IR Photon Detectors 488
8.5.1 Quantum Well IR Photoconductor 489
8.5.2 Strained-Layer Super-Lattice Detectors 496
8.5.3 Quantum Dot IR Photodetectors 498
8.5.4 Cooled and Uncooled Detectors 499
8.6 IR Imaging Detectors for Astronomy 501
8.6.1 Indium Antimonide Detectors 504
8.6.2 HgCdTe-Based Detectors 508
8.6.2.1 NICMOS 512
8.6.2.2 PICNIC 514
8.6.2.3 HST Wide-field camera 515
8.6.2.4 HAWAII 516
8.6.2.5 SAPHIRA 521
8.7 Heterodyne Interferometry 523
 8.7.1 Conventional Heterodyne Detection 525
 8.7.1.1 Two-frequency single-photon heterodyne detection 525
 8.7.1.2 Two-frequency multi-photon heterodyne detection 526
 8.7.2 Non-Linear Heterodyne Detection 529

Appendix 533
Bibliography 535
Index 555