Cell Surface Engineering
Fabrication of Functional Nanoshells

Edited by

Rawil F Fakhrullin
Kazan Federal University, Republic of Tatarstan, Russian Federation
Email: kazanbio@gmail.com

Insung S Choi
KAIST, Daejeon, Republic of Korea
Email: ischoi@kaist.ac.kr

and

Yuri Lvov
Louisiana Tech University, LA, USA
Email: ylvov@coes.latech.edu
Contents

Chapter 1 Introduction 1
Rawil F. Fakhrullin, Yuri M. Lvov and Insung S. Choi

References 3

Chapter 2 Functional Multilayered Polyelectrolyte Assemblies on Biological Cells 4
Ben Wang

2.1 Layer-by-Layer (LbL) Polyelectrolyte Assembly 4
2.1.1 Self-Assembly and Emerging of LbL Polyelectrolyte Assembly 4
2.1.2 Physics and Molecular Properties of LbL Polyelectrolyte Assembly 5
2.1.3 Types of LbL Assembly 5
2.2 LbL Polyelectrolyte Assembly on Cells 7
2.2.1 Cell-Templated LbL Assembly for Polyelectrolyte Shell 7
2.2.2 Cell-Directed LbL Assembly for Cellular Shell 9
2.3 The Toxicity of Multilayered Polyelectrolyte Assembly 21
2.4 Conclusions and Perspective 22
References 23

Chapter 3 Direct Deposition of Nanomaterials onto Cells 28
Alsu I. Zamaleeva, Renata T. Minullina, Joshua R. Tully, Maria R. Dzamukova, Svetlana A. Konnova and Ekaterina A. Naumenko

3.1 Introduction 28
3.2 Cell-Nanoparticle Hybrids 30
3.3 *In Situ* Deposition of Nanoparticles onto Cells 35
3.4 Ligand-Specific Nanomaterials Deposition onto Cells 37
3.5 From the Nanomaterials Deposition onto Cells to Emerging Technologies 41
3.6 Conclusions 45
Acknowledgements 45
References 45

Chapter 4 Bioinspired Encapsulation of Living Cells within Inorganic Nanoshells 48
Ji Hun Park, Juno Lee, Beom Jin Kim and Sung Ho Yang

4.1 Introduction 48
4.2 Direct Reduction of Inorganic Precursors on Cell Surfaces 51
 4.2.1 *In Vivo* Gold Mineralization 51
 4.2.2 Gold Shells for Cell Encapsulation 52
4.3 Bioinspired Shells Formed by Ionic Interactions 56
 4.3.1 Calcium Phosphate Shells 57
 4.3.2 Calcium Carbonate Shells 59
 4.3.3 Lanthanide Phosphate Shells 61
4.4 Artificial Shells Inspired by Biosilicification 63
 4.4.1 Silica Shells 64
 4.4.2 Functionalized Silica Shells 67
 4.4.3 Titania Shells 68
 4.4.4 Titania–Silica Hybrid Shells 70
4.5 Summary and Perspectives 72
References 73

Chapter 5 Characterization Techniques of Living Cells Encapsulated with Nanomaterials 80
Mustafa Çulha

5.1 Introduction 80
5.2 Imaging Techniques 81
5.3 Spectroscopic Techniques 87
5.4 Other Techniques 93
5.5 Conclusions 96
Acknowledgement 96
References 96
Chapter 6 Cytocompatibility and Toxicity of Functional Coatings Engineered at Cell Surfaces
Eugenia Kharlampieva and Veronika Kozlovskaya

6.1 Methods for Evaluation of Cell Toxicity 99
 6.1.1 Colorimetric Assays 99
 6.1.2 Cell-Growth Measurements 101
 6.1.3 Activation of Cell Functionality 101

6.2 Cytocompatibility of Functionalizing Species 103
 6.2.1 Architectural Differences of Cells 103
 6.2.2 Cytotoxicity of Polymers 104
 6.2.3 Cytotoxicity of Nanoparticles 106

6.3 Cytocompatibility of Cell Functionalization Approaches 108
 6.3.1 Layer-by-layer Assembly of Polymers 109
 6.3.2 Nanothin Organic Shells 113
 6.3.3 Formation of Thin Solid Shells 113

6.4 Conclusion and Outlook 119

Acknowledgement 120
References 120

Chapter 7 Microelectronic Devices Based on Nanomaterial-Carrier Cells
Vivek Maheshwari and Shehan Salgado

7.1 Introduction 126

7.2 Device Configurations 129
 7.2.1 IN and OUT Devices 129
 7.2.2 ON and UNDER Devices 130

7.3 Principles of Cell-Nanomaterial Devices 131
 7.3.1 Tunneling Barrier Effect 131
 7.3.2 Gating Effect 133
 7.3.3 Observing Ion Flow 135

7.4 Demonstrated Examples of ON Cell Devices 136
 7.4.1 Gold Nanoparticles on Cells 136
 7.4.2 Chemically Reduced Graphene on Cells 137

7.5 Challenges and the Future 138
 7.5.1 Challenges 138
 7.5.2 The Future 139

References 140

Chapter 8 Artificial Spores
Daewha Hong, Eun Hyea Ko and Insung S. Choi

8.1 Introduction: Cryptobiosis and Bacterial Endospores 142
<table>
<thead>
<tr>
<th>8.2 Criteria and Approaches for Fabrication of Artificial Spores</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 Control of Cell Division</td>
<td>146</td>
</tr>
<tr>
<td>8.3.1 Passive Control of Cell Division</td>
<td>146</td>
</tr>
<tr>
<td>8.3.2 Active Control of Cell Division</td>
<td>150</td>
</tr>
<tr>
<td>8.4 Resistance to Stress</td>
<td>151</td>
</tr>
<tr>
<td>8.4.1 Resistance to Malnutrition and Osmotic Pressure</td>
<td>151</td>
</tr>
<tr>
<td>8.4.2 Resistance to Lytic Enzymes</td>
<td>153</td>
</tr>
<tr>
<td>8.4.3 Resistance to Heat</td>
<td>154</td>
</tr>
<tr>
<td>8.4.4 Resistance to UV</td>
<td>155</td>
</tr>
<tr>
<td>8.5 Applications</td>
<td>156</td>
</tr>
<tr>
<td>8.5.1 Functional Artificial Shells for Biotechnological Applications</td>
<td>157</td>
</tr>
<tr>
<td>8.5.2 Biological Platform for Studying the Biology of Single Cells</td>
<td>159</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>

Chapter 9 Artificial Multicellular Assemblies from Cells Interfaced with Polymers and Nanomaterials

Anupam A. K. Das, Rawil F. Fakhrullin and Vesselin N. Paunov

<table>
<thead>
<tr>
<th>9.1 Introduction</th>
<th>162</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 Cyborg Cells as Building Blocks for Cell Assembly</td>
<td>164</td>
</tr>
<tr>
<td>9.3 Template-Mediated Multicellular Assemblies</td>
<td>165</td>
</tr>
<tr>
<td>9.4 Multicellular Assembly Driven by External Fields</td>
<td>168</td>
</tr>
<tr>
<td>9.5 Assembly of Tissue Spheroids</td>
<td>171</td>
</tr>
<tr>
<td>9.6 Hydrogel and Polyelectrolyte-Mediated Multicellular Assemblies</td>
<td>176</td>
</tr>
<tr>
<td>9.7 Applications of Artificial Multicellular Assemblies</td>
<td>179</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>180</td>
</tr>
<tr>
<td>References</td>
<td>180</td>
</tr>
</tbody>
</table>

Chapter 10 Magnetic Decoration and Labeling of Prokaryotic and Eukaryotic Cells

Ivo Safarik, Zdenka Maderova, Kristyna Pospiskova, Katerina Horska and Mirka Safarikova

<table>
<thead>
<tr>
<th>10.1 Introduction</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2 Magnetic Decoration and Labeling of Cells</td>
<td>186</td>
</tr>
<tr>
<td>10.2.1 Interaction of Target Cells with Magnetic Nano- and Microparticles</td>
<td>187</td>
</tr>
<tr>
<td>10.2.2 Covalent Immobilization of Cells on Magnetic Carriers</td>
<td>192</td>
</tr>
</tbody>
</table>