Contributor contact details xi
Woodhead Publishing Series in Metals and Surface Engineering xv

1 The chemistry of rare earth metals, compounds, and corrosion inhibitors 1
T. Behrsing, Monash University and PrixMax Australia Pty Ltd., Australia, G. B. Deacon, Monash University, Australia and P. C. Junk, James Cook University, Australia
1.1 Introduction: the need to replace chromate 1
1.2 Rare earth elements and their place in the Periodic Table 2
1.3 Discovery, location and abundance of rare earths 4
1.4 Uses of the rare earths 7
1.5 General chemistry properties of rare earth elements and compounds 9
1.6 Rare earth corrosion inhibitors: carboxylate complexes 15
1.7 Strategies to model corrosion protection mechanisms 27
1.8 Future trends 33
1.9 Acknowledgement 33
1.10 References 34

2 Testing and analysis techniques in rare earth inhibitor research 38
Y. Tan, Deakin University, Australia and Y. Huang and F. Mansfeld, University of Southern California, USA
2.1 Introduction 38
2.2 Identification and simulation of corrosion and inhibition mechanisms 39
2.3 Non-electrochemical and electrochemical corrosion testing and analysis techniques 44
2.4 Probe techniques for localized corrosion inhibitor research 51
2.5 Using electrochemical and surface analytical techniques to evaluate corrosion protection by rare earth metal (REM) compounds 57
Contents

2.6 Evaluating the corrosion protection of aluminium and its alloys using REM compounds 58
2.7 Evaluating the corrosion protection of zinc, zinc alloys and galvanized steel using REM compounds 67
2.8 Evaluating the corrosion protection of magnesium and magnesium alloys using REM compounds 70
2.9 Evaluating the corrosion protection of steel and stainless steels using REM compounds 76
2.10 Conclusions 78
2.11 References 78

3 Corrosion inhibition with rare earth metal compounds in aqueous solutions 84
J. de DAMBORENEA, A. CONDE and M. A. ARENAS, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Spain
3.1 Introduction 84
3.2 Corrosion inhibitors: the new role of green chemistry 85
3.3 Rare earths as corrosion inhibitors in aqueous systems 87
3.4 Mechanisms of formation of the layer 95
3.5 Special cases of inhibition by rare earth compounds: mechanically assisted corrosion 101
3.6 Future trends 108
3.7 References 110

4 Multifunctional rare earth organic corrosion inhibitors 117
T. MARKLEY, CSIRO Materials Science and Engineering, Australia.
F. BLIN, AECOM, Australia. M. FORSYTH, Deakin University, Australia and B. HINTON, Monash University, Australia
4.1 Introduction 117
4.2 Corrosion inhibitor technologies 118
4.3 Types and performance of multifunctional inhibitors 120
4.4 Multifunctional inhibitors for steel 121
4.5 Multifunctional inhibitors for aluminium alloys and other metals and alloys 126
4.6 Advantages and limitations of using multifunctional rare earth organic inhibitors for corrosion protection 133
4.7 Future trends 134
4.8 References 135

5 Anodized anti-corrosion coatings for aluminium using rare earth metals 143
M. CURIONI, P. SKELDON and G. E. THOMPSON, The University of Manchester, England, UK
5.1 Introduction 143
5.2 Fundamentals of anodizing of aluminium 144
5.3 Anodizing technology 149
5.4 Corrosion protection by rare earth species 150
5.5 Summary 157
5.6 References 158

6 Corrosion-resistant polymer coatings containing rare earth compounds 163
M. J. O'Keeffe, W. G. Fahrenholtz and J. O. Stoffer, Missouri University of Science and Technology, USA and E. L. Morris, PPG Aerospace, USA

6.1 Introduction 163
6.2 Rare earth compounds as replacements of chromate compounds in polymer coatings 164
6.3 Using cerium-based inhibitors in eCoat paints 165
6.4 Praseodymium-based inhibitors in epoxy polyamide primers 167
6.5 Future trends 184
6.6 Acknowledgements 184
6.7 References 184

7 Coatings for corrosion prevention based on rare earths 186
A. E. Hughes and T. G. Harvey, Commonwealth Scientific and Industrial Research Organisation, Australia, N. Birbilis and A. Kumar, Monash University, Australia and R. G Buchheit, The Ohio State University, USA

7.1 Introduction 186
7.2 Rare earth metal (REM) aqueous chemistry 190
7.3 Characterization of rare earth corrosion inhibition mechanisms 192
7.4 The development of REM containing coatings for aluminium 197
7.5 Conversion coating processes 198
7.6 Sol-gel coating processes 205
7.7 Boehmite formation in solutions containing rare earths 206
7.8 Surface cleaning processes and coating effectiveness 210
7.9 Performance testing 212
7.10 Coatings for metals other than aluminium 218
7.11 Summary 223
7.12 References 223

8 Novel and self-healing anticorrosion coatings using rare earth compounds 233

8.1 Introduction 233
8.2 Types of self-healing coating 237
Contents

8.3 Hybrid coatings containing rare earth (RE) compounds: sol-gel coatings 238
8.4 Hybrid coatings containing RE compounds: sol-gel coatings modified by soluble RE inhibitors 239
8.5 Hybrid coatings containing RE compounds: RE inhibitors in nanoreservoirs 243
8.6 Hybrid coatings containing RE compounds: nanocarriers with immobilized RE-based inhibitors 247
8.7 RE-doped organic coatings 251
8.8 RE-containing metallic coatings 255
8.9 Summary 259
8.10 References 260

9 Tunable multifunctional corrosion-resistant metallic coatings containing rare earth elements 267
J. R. Scully, University of Virginia, USA, N. Tailleart, U.S. Naval Research Laboratories, USA and F. Presuel-Moreno, Florida Atlantic University, USA
9.1 Introduction 267
9.2 Corrosion protection mechanisms by passive films and coatings 268
9.3 Sacrificial anode-based cathodic protection versus active corrosion inhibition 268
9.4 Long-range corrosion protection of coating defects 269
9.5 One vision for new coatings with multiple, tunable functions 270
9.6 Materials and fabrication of tunable amorphous metallic coatings 272
9.7 Tunable barrier properties in multifunctional amorphous Al-TM-RE coatings 276
9.8 Tunable sacrificial anode-based cathodic protection in Al-TM-RE coatings 278
9.9 On-demand active-corrosion inhibition based on tunable Al-TM-RE alloy coatings 281
9.10 Summary 285
9.11 Acknowledgements 285
9.12 References 285

10 The cost and availability of rare earth-based corrosion inhibitors 291
A. E. Hughes, CSIRO Materials Science and Engineering, Australia, J. M. C. Mol, Delft University of Technology, The Netherlands and I. S. Cole, CSIRO Materials Science and Engineering, Australia
10.1 Introduction 291
10.2 The rare earth elements 292
10.3 Abundance 292
10.4 Mineralogy and mining 295
10.5 Rare earth availability 295
10.6 Uses 296
10.7 Potential demand for rare earth and other inhibitors 297
10.8 Health and environment issues 300
10.9 Summary 301
10.10 References 301

Index 307