Contents

List of contributors xi
Woodhead Publishing Series in Electronic and Optical Materials xiii

Part One Properties and materials 1

1 Mechanics of curvature and strain in flexible organic electronic devices 3
Y. Leterrier
1.1 Introduction 3
1.2 Stress and strain analyses 4
1.3 Failure under tensile stress 14
1.4 Failure under compressive stress 17
1.5 Mechanical test methods 19
1.6 Toward compliant and stretchable electronics 25
1.7 Conclusions 27
Acknowledgements 28
References 28
Appendix: Nomenclature 36

2 Structural and electronic properties of fullerene-based organic materials: density functional theory-based calculations 37
G. Volonakis, S. Logothetidis
2.1 Introduction 37
2.2 Theoretical background 38
2.3 Structural transformations of fullerenes based on DFT calculations 41
2.4 Prototype impurities in fullerene crystals and electronic effects 47
2.5 Summary and future trends 53
References 54

3 Hybrid and nanocomposite materials for flexible organic electronics applications 57
3.1 Introduction 57
3.2 Production methods 61
3.3 Properties

3.4 Limitations

3.5 Electronics applications

3.6 Future trends

3.7 Sources of further information and advice

| Acknowledgements | 74 |
| References | 74 |

4 Organic polymeric semiconductor materials for applications in photovoltaic cells

J.K. Kallitsis, S. Kourkouli, A.K. Andreopoulou

4.1 Introduction	85
4.2 Polymeric electron donors for bulk-heterojunction photovoltaic solar cells	86
4.3 Fullerene and polymeric-based electron acceptors for bulk heterojunction photovoltaic solar cells	100
4.4 Hybrid structures of polymer, copolymer semiconductors with carbon nanostructures	109
4.5 Conclusions	113
References	114

Part Two Technologies

5 High-barrier films for flexible organic electronic devices

D. Georgiou, S. Logothetidis

5.1 Introduction	123
5.2 Encapsulation of flexible OEs	123
5.3 Permeability mechanisms through barrier materials	126
5.4 Permeation measurement techniques	128
5.5 Advances in high-barrier materials	129
5.6 Conclusions	138
Acknowledgements	139
References	139

6 Advanced interconnection technologies for flexible organic electronic systems

M. Koyuncu, E. Lorenz, A. Zimmermann

6.1 Introduction	143
6.2 Materials and processes	145
6.3 Reliability	158
6.4 Summary and future trends	165
Acknowledgements	167
References	167
7 Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic electronics
B. Roth, R.R. Søndergaard, F.C. Krebs
7.1 Introduction 171
7.2 Printing techniques 172
7.3 Coating techniques 182
7.4 Specialist coating techniques 184
7.5 Encapsulation techniques 187
7.6 Applications 189
7.7 Future trends 191
References 192

8 Integrated printing for 2D/3D flexible organic electronic devices
B.S. Cook, B. Tehrani, J.R. Cooper, S. Kim, M.M. Tentzeris
8.1 Introduction 199
8.2 Fundamentals of inkjet printing 200
8.3 Electronic inks 206
8.4 Vertically integrated inkjet-printed electronic passive components 208
8.5 Conclusions 214
References 214

9 In situ characterization of organic electronic materials using X-ray techniques
S. Grigorian
9.1 Introduction 217
9.2 Grazing incidence X-ray diffraction 218
9.3 Temperature-dependent studies 219
9.4 In situ X-ray studies 220
9.5 Conclusions and future trends 247
Acknowledgements 247
References 248

10 In-line monitoring and quality control of flexible organic electronic materials
A. Laskarakis, S. Logothetidis
10.1 Introduction 227
10.2 Fundamentals of spectroscopic ellipsometry 229
10.3 Characterization of organic electronic nanomaterials 235
10.4 Conclusions and future trends 247
Acknowledgements 247
References 248
11 Optimization of active nanomaterials and transparent electrodes using printing and vacuum processes

C. Koidis, S. Logothetidis

11.1 Introduction
11.2 Optimization of r2r printed active nanomaterials and electrodes
11.3 Combination of wet and vacuum techniques for OEs
11.4 Future trends
Acknowledgements
References

12 Laser processing of flexible organic electronic materials

P. Delaporte, D. Karnakis, I. Zergioti

12.1 Introduction
12.2 The physics of laser interaction with thin films
12.3 Laser systems and sources
12.4 Beam delivery assembly
12.5 Laser modification of materials and C surfaces
12.6 Laser ablation processes
12.7 Laser printing
12.8 Conclusions and future trends
Acknowledgements
References

13 Flexible organic electronic devices on metal foil substrates for lighting, photovoltaic, and other applications

B.W. D'Andrade, A.Z. Kattamis, P.F. Murphy

13.1 Introduction
13.2 Substrate selection
13.3 Substrate preparation
13.4 TFTs for displays on metal foil
13.5 OLED lighting and photovoltaics on metal foil
13.6 Future trends
References

Part Three Applications

14 Smart integrated systems and circuits using flexible organic electronics: automotive applications

N. Li Pira

14.1 Introduction
14.2 Materials for integrated systems
14.3 Manufacturing processes
14.4 Automotive applications
14.5 Conclusions
References
Contents

15 Chemical sensors using organic thin-film transistors (OTFTs)

M. Demelas, S. Lai, P. Cosseddu, A. Loi, M. Barbaro, A. Bonfiglio

15.1 Introduction 375
15.2 Gas and vapour sensors 376
15.3 Humidity sensors 378
15.4 pH detection 380
15.5 Glucose detection 383
15.6 Deoxyribonucleic acid detection 387
15.7 Conclusions 394
References 394

16 Microfluidic devices using flexible organic electronic materials

Z.G. Wu

16.1 Introduction 397
16.2 Microfluidics and electronics 397
16.3 Materials and fabrication techniques 399
16.4 Device examples 404
16.5 Summary 409
16.6 Future trends 410
Acknowledgements 410
References 411

17 Two-terminal organic nonvolatile memory (ONVM) devices

A. Sleiman, P.W. Sayers, D.A. Zeze, M.F. Mabrook

17.1 Introduction 413
17.2 Carbon nanotube (CNT)-based 2T-ONVM structures 417
17.3 Conclusion 425
References 426

18 Printed, flexible thin-film-batteries and other power storage devices

G. Huebner, M. Krebs

18.1 Introduction 429
18.2 The development of printed batteries 431
18.3 Basic design of printed batteries 433
18.4 Printing technologies and challenges 435
18.5 Properties of printed batteries 442
18.6 Conclusions and future trends 446
Appendix: Patent applications on printed batteries 446
References 446

Index 449