Fatigue and Fracture of Adhesively-bonded Composite Joints

Behaviour, Simulation and Modelling

Edited by

A. P. Vassilopoulos
Contents

List of contributors xi
Woodhead Publishing Series in Composites Science and Engineering xiii

Part One Introduction to fatigue and fracture of adhesively-bonded composite joints 1

1 Investigating the performance of adhesively-bonded composite joints: standards, test protocols, and experimental design 3
 A.J. Brunner
 1.1 Introduction 3
 1.2 Standards and test protocols for experimental fatigue and fracture testing of adhesively-bonded composite joints 7
 1.3 Standards and test protocols for fatigue and fracture testing of pultruded glass-fiber reinforced polymer-matrix (GFRP) profiles 14
 1.4 Standards and test protocols for determining environmental effects in fatigue, fracture, and durability testing 22
 1.5 Standards and test protocols for modeling and simulation of fracture and fatigue behavior 24
 1.6 Summary and future trends 26
 1.7 Sources of further information and advice
 Acknowledgments 30
 References 30
 Appendix: list of abbreviations 42

2 Design of adhesively-bonded composite joints 43
 L.F.M. da Silva, R.D.S.G. Campilho
 2.1 Introduction 43
 2.2 Factors affecting joint strength 48
 2.3 Methods to increase joint strength 59
 2.4 Hybrid joints 63
 2.5 Repair techniques 66
 2.6 Conclusions 68
 References 68
3 **Understanding fatigue loading conditions in adhesively-bonded composite joints** 73
R. Sarfaraz
3.1 Introduction 73
3.2 Fatigue data 75
3.3 Tensile versus compressive fatigue 75
3.4 Effects of fatigue loading parameters 76
3.5 Future trends 86
3.6 Sources of further information and advice 86
References 86

Part Two **Fatigue and fracture behaviour of adhesively-bonded composite joints** 91

4 **Mode I fatigue and fracture behaviour of adhesively-bonded carbon fibre-reinforced polymer (CFRP) composite joints** 93
R.D.S.G. Campilho, L.F.M. da Silva
4.1 Introduction 93
4.2 Carbon fibre-reinforced polymer (CFRP) composite joints 96
4.3 Preparation and testing of CFRP joints in mode I 98
4.4 Fatigue characterization by the S–N approach 102
4.5 Fatigue characterization by the fatigue crack growth (FCG) approach 104
4.6 Fracture modes of CFRP joints in mode I 113
4.7 Conclusions 116
References 117

5 **Mode I fatigue behaviour and fracture of adhesively-bonded fibre-reinforced polymer (FRP) composite joints for structural repairs** 121
J. Renart, J. Costa, C. Sarrado, S. Budhe, A. Turon, A. Rodríguez-Bellido
5.1 Introduction 121
5.2 Configuration of the bonded joint 122
5.3 Test generalities 124
5.4 Fatigue testing 131
5.5 Effect of waviness in crack growth rate curves 139
5.6 Design and simulation approaches 141
5.7 Conclusions 143
Acknowledgements 144
References 144
10 Durability and residual strength of adhesively-bonded composite joints: the case of F/A-18 A–D wing root stepped-lap joint

W. Seneviratne, J. Tomblin, M. Kittur

10.1 Introduction 289
10.2 Bonded joint applications in F/A-18 290
10.3 Stress analysis of stepped-lap joints 291
10.4 End-of-life residual strength evaluation of wing root stepped-lap joint 293
10.5 Remaining life after fleet service 302
10.6 Inner-wing full-scale fatigue test 315
10.7 Conclusions 318
Acknowledgments 319
References 320

Part Three Modelling fatigue and fracture behaviour

11 Simulating mode I fatigue crack propagation in adhesively-bonded composite joints

M.M. Abdel Wahab

11.1 Introduction 323
11.2 Finite element (FE) modelling 324
11.3 Fracture mechanics (FM) approach 329
11.4 Cohesive zone model (CZM) approach 335
11.5 Mixed CZM and FM approach 340
11.6 Conclusions 342
References 343

12 Simulating the effect of fiber bridging and asymmetry on the fracture behavior of adhesively-bonded composite joints

M. Shahverdi, A.P. Vassilopoulos, T. Keller

12.1 Introduction 345
12.2 Experimental investigation of asymmetry and fiber-bridging effects 348
12.3 Finite element modeling 354
12.4 Results and discussion of asymmetry and fiber-bridging effects 360
12.5 Conclusions 364
References 365

13 Simulating the mixed-mode fatigue delamination/debonding in adhesively-bonded composite joints

A. Pirondi, G. Giuliese, F. Moroni, A. Bernasconi, A. Jamil

13.1 Introduction to the simulation of fatigue delamination/debonding 369
13.2 Cohesive zone and virtual crack closure technique (VCCT) model formulation 376
13.3 Comparison of cohesive zone and VCCT on fatigue delamination/debonding 391
13.4 Conclusions 397
References 397

14 Predicting the fatigue life of adhesively-bonded composite joints under mode I fracture conditions 401
T.A. Hafiz, M.M. Abdel Wahab
14.1 Introduction 401
14.2 Characterization of fatigue in bonded joints 402
14.3 Analytical approach to fatigue life prediction of adhesively-bonded joints 404
14.4 Finite element analysis approach to fatigue life prediction of adhesively-bonded joints 412
14.5 Validation of the finite element approach 415
14.6 Conclusions 415
References 416

15 Predicting the fatigue life of adhesively-bonded composite joints under mixed-mode fracture conditions 419
P. Naghipour
15.1 Introduction 419
15.2 Diverse approaches to modeling fatigue life of composite materials 420
15.3 Various cohesive zone models for cyclic delamination 421
15.4 Cohesive zone model for cyclic delamination incorporating the Paris fatigue law 426
15.5 Cohesive zone model for cyclic delamination incorporating the Paris fatigue law and a mixed-mode cohesive area 430
15.6 Modeling cyclic mixed-mode delamination using the developed cohesive zone technique 431
15.7 Conclusions and future trends 439
References 439

16 Predicting the fatigue life of adhesively-bonded structural composite joints 443
A.P. Vassilopoulos
16.1 Introduction 443
16.2 S–N formulations for composites and adhesively-bonded composite joints 448
16.3 Comparison of existing fatigue models 456
16.4 Discussion on the S–N formulations 465
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5</td>
<td>Constant life diagram (CLD) formulations for composites and adhesively-bonded composite joints</td>
<td>467</td>
</tr>
<tr>
<td>16.6</td>
<td>Comparison of existing constant life diagram (CLD) formulations</td>
<td>478</td>
</tr>
<tr>
<td>16.7</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>487</td>
</tr>
<tr>
<td>17</td>
<td>Developing an integrated structural health monitoring and damage prognosis (SHM-DP) framework for predicting the fatigue life of adhesively-bonded composite joints</td>
<td>493</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>493</td>
</tr>
<tr>
<td>17.2</td>
<td>Proposed reliability-based structural health monitoring and damage prognosis (SHM-DP) framework for fatigue damage prognosis</td>
<td>495</td>
</tr>
<tr>
<td>17.3</td>
<td>Recursive Bayesian characterization of the current state of damage</td>
<td>500</td>
</tr>
<tr>
<td>17.4</td>
<td>Probabilistic load hazard analysis</td>
<td>505</td>
</tr>
<tr>
<td>17.5</td>
<td>Probabilistic mechanics-based debonding evolution analysis</td>
<td>507</td>
</tr>
<tr>
<td>17.6</td>
<td>Probabilistic characterization of global system performance</td>
<td>511</td>
</tr>
<tr>
<td>17.7</td>
<td>Damage prognosis analysis</td>
<td>513</td>
</tr>
<tr>
<td>17.8</td>
<td>Effectiveness of proposed methodology in predicting the remaining time to failure</td>
<td>516</td>
</tr>
<tr>
<td>17.9</td>
<td>Future trends</td>
<td>519</td>
</tr>
<tr>
<td>17.10</td>
<td>Conclusions, recommendations, and additional sources of information</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>527</td>
</tr>
</tbody>
</table>