ADVANCES IN
PROTEIN CHEMISTRY AND
STRUCTURAL BIOLOGY
Biomolecular Modelling and Simulations

Edited by
TATYANA KARABENCHEVA-CHRISTOVA
Department of Applied Sciences
Northumbria University at Newcastle
Newcastle-upon-Tyne, United Kingdom
CONTENTS

Contributors ix
Preface xiii

1. The Interplay Between Molecular Modeling and Chemoinformatics to Characterize Protein–Ligand and Protein–Protein Interactions Landscapes for Drug Discovery 1
José L. Medina-Franco, Oscar Méndez-Lucio, and Karina Martinez-Mayorga
1. Introduction 2
2. Characterizing PLIs with Fingerprints 3
3. Visualization of PLIs and PLIFs: The PLIs Space 12
4. Exploring SPLIRs 17
5. Target–Ligand Relationships in Chemogenomics Data Sets 25
6. Protein–Protein Interactions 28
7. Conclusions 30
Acknowledgments 31
References 31

2. Computational Study of Putative Residues Involved in DNA Synthesis Fidelity Checking in Thermus aquaticus DNA Polymerase I 39
Angela A. Elias and G. Andrés Cisneros
1. Introduction 40
2. Methods 42
3. Results and Discussion 46
4. Conclusions 71
References 72

3. New Strategies for Integrative Dynamic Modeling of Macromolecular Assembly 77
Enrico Spiga, Matteo Thomas Degiacomi, and Matteo Dal Peraro
1. Introduction 78
2. Predicting Protein–Protein Recognition at the Atomistic Level 80
3. Tackling Protein–Protein Interactions at Coarse-Grained Resolution 81
4. Predicting Protein Assembly Using Integrative Modeling 91
5. Conclusions and Perspectives 101
4. Stability of Amyloid Oligomers 113
Workalemahu M. Berhanu and Ulrich H.E. Hansmann

1. Introduction 113
2. Effect of Force Field on the Preformed Oligomer 118
3. Role of Mutations 118
4. Stability of Cylindrin β-Barrel Amyloid Oligomer Models 120
5. Amyloid Polymorphism 122
6. Amyloid Aggregation and Cross Seeding 124
7. Toxicity Mechanism of Amyloid from Molecular Dynamic Simulations 128
8. Conclusions and Outlook 130
Acknowledgments 132
References 132

5. Recent Advances in Transferable Coarse-Grained Modeling of Proteins 143
Parimal Kar and Michael Feig

1. Introduction 144
2. CG Models of Protein 147
3. Hybrid All-atom/Coarse-Grained (AA/CG) Modeling of Proteins 164
4. Outlook 170
5. Conclusions 171
Acknowledgment 171
References 171

6. Studying Allosteric Regulation in Metal Sensor Proteins Using Computational Methods 181
Dhruva K. Chakravorty and Kenneth M. Merz Jr.

1. Introduction 183
2. Methods 187
3. Understanding Protein–DNA Interactions 191
4. Hydrogen-Bonding Pathway 197
5. Quantifying Metal-Ion Mediated Allostery 205
6. Mutant Analyses to Understand the HBP 208
7. Conclusions 211
Acknowledgments 214
References 214
7. Insights in the Mechanism of Action and Inhibition of N-Acylethanolamine Acid Amidase by Means of Computational Methods 219
 Alessio Lodola, Silvia Rivara, and Marco Mor
 1. Introduction 220
 2. General Information and Catalytic Mechanism of Cysteine Ntn-Hydrolases 221
 3. Inhibition of NAAA by β-Lactones 225
 4. Recent Advances in the Field of Active-Site-Directed NAAA Inhibitors 230
 Acknowledgment 232
 References 232

8. CHARMM-GUI PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues 235
 Sunhwan Jo, Xi Cheng, Shahidul M. Islam, Lei Huang, Huan Rui, Allen Zhu, Hui Sun Lee, Yifei Qi, Wei Han, Kenno Vanommeslaeghe, Alexander D. MacKerell Jr., Benoît Roux, and Wonpil Im
 1. Introduction 236
 2. Ligand FF Generation 238
 3. MTS Reagents 244
 4. Unnatural Amino Acids 253
 5. Perspectives 259
 Acknowledgments 259
 References 260

9. High-Resolution Modeling of Protein Structures Based on Flexible Fitting of Low-Resolution Structural Data 267
 Wenjun Zheng and Mustafa Tekpinar
 1. Introduction 268
 2. Methods 270
 3. Results 276
 4. Discussion 279
 Acknowledgment 281
 References 281

Author Index 285
Subject Index 309