Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications

Edited by

Aggelos Doukelis, Kyriakos Panopoulos, Antonios Koumanakos and Emmanouil Kakaras
Contents

List of contributors xi
Woodhead Publishing Series in Energy xiii

1 Introduction to palladium membrane technology 1

K. Atsonios, K.D. Panopoulos, A. Doukelis, A.K. Koumanakos, E. Kakaras,
T.A. Peters, Y.C. van Delft

1.1 Introduction 1
1.2 Current palladium membrane technology and research 3
1.3 Principles and types of palladium membrane 4
1.4 Separation mechanisms 6
1.5 Palladium-based membranes 9
1.6 Manufacturing of palladium membranes 10
1.7 Applications of palladium membranes 11
1.8 Palladium membrane technology scale-up issues 14
References 15

Part One Membrane fabrication and reactor design 23

2 Fabrication of palladium-based membranes by magnetron sputtering 25

T.A. Peters, M. Stange, R. Bredesen

2.1 Introduction 25
2.2 Membrane fabrication by magnetron sputtering 26
2.3 Membrane and module design 29
2.4 Conclusions 36
Acknowledgements 36
References 37

3 The use of electroless plating as a deposition technology in the fabrication of palladium-based membranes 43

M.J. den Exter

3.1 Introduction 43
3.2 Electroless plating 43
3.3 Industrial electroless plating applications 53
3.4 Other deposition techniques and their pros/cons 53
3.5 Important process parameters in scaling up electroless plating 61
References 65
4 Large-scale ceramic support fabrication for palladium membranes
H. Richter

4.1 Introduction 69
4.2 Tubular porous ceramic substrates 72
4.3 Flat porous ceramic substrates 73
4.4 Macro- and mesoporous membrane layers made by slurry coating 74
4.5 Mesoporous ceramic membrane layers made by the sol-gel process 75
4.6 Special demands on palladium-supporting ceramic ultra-filtration (UF) membranes 76
4.7 Mass production of ceramic membranes for ultra-filtration (UF) 79
4.8 Strategies for reducing ceramic membrane production costs 79
4.9 Conclusions 81
References 81

5 Fabrication of supported palladium alloy membranes using electroless plating techniques
D.A. Pacheco Tanaka, J. Okazaki, M.A. Llosa Tanco, T.M. Suzuki

5.1 Introduction 83
5.2 Preparation of palladium membranes by electroless plating (ELP) 84
5.3 "Pore-fill" palladium membranes 88
5.4 Preparation of an ultra-thin Pd-Ag alloy membrane supported on a YSZ-γ-Al₂O₃ nanocomposite 91
5.5 High temperature Pd-based supported membranes 92
5.6 Conclusion 97
References 97

6 Development and application of self-supported palladium membranes
S. Tosti

6.1 Introduction 101
6.2 Properties of hydrogenated Pd-Ag 102
6.3 Dense Pd-Ag membranes 117
6.4 Applications: membrane reactors 130
6.5 Conclusions 143
References 147

7 Testing palladium membranes: methods and results
G. Iaquaniello, E. Palo, A. Salladini, B. Cucchiella

7.1 Introduction: key parameters in scaling up membrane technology 153
7.2 The KT – Kinetics Technology membrane assisted steam reforming plant 155
7.3 Membrane modules 158
7.4 Testing membrane module stability and durability 159
7.5 Conclusions 165
References 165
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Criteria for palladium membrane reactor design: architecture, thermal effects and autothermal design</td>
<td>167</td>
</tr>
<tr>
<td>M. Sheintuch</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>8.2 Design and modelling of an isothermal, single reaction, single reactor</td>
<td>170</td>
</tr>
<tr>
<td>8.3 Design and modelling of an isothermal, single reaction, distributed system</td>
<td>176</td>
</tr>
<tr>
<td>8.4 Modelling multiple reactions</td>
<td>176</td>
</tr>
<tr>
<td>8.5 Modelling thermal effects</td>
<td>179</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>188</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>189</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
<tr>
<td>9 Simulation of palladium membrane reactors: a simulator developed in the CACHET-II project</td>
<td>193</td>
</tr>
<tr>
<td>J.C. Morud</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>193</td>
</tr>
<tr>
<td>9.2 Reactor configurations investigated during the CACHET-II project</td>
<td>193</td>
</tr>
<tr>
<td>9.3 Model development</td>
<td>194</td>
</tr>
<tr>
<td>9.4 Sub-models</td>
<td>199</td>
</tr>
<tr>
<td>9.5 Calculation of physical properties</td>
<td>207</td>
</tr>
<tr>
<td>9.6 Implementing the model: reactor modules</td>
<td>208</td>
</tr>
<tr>
<td>9.7 Use of the program</td>
<td>208</td>
</tr>
<tr>
<td>References</td>
<td>209</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>210</td>
</tr>
<tr>
<td>Greek symbols</td>
<td>211</td>
</tr>
<tr>
<td>Part Two Application of palladium membrane technology in hydrogen production, carbon capture and other applications</td>
<td>213</td>
</tr>
<tr>
<td>10 Palladium membranes in solar steam reforming</td>
<td>215</td>
</tr>
<tr>
<td>A. Giaconia</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction: what is steam reforming?</td>
<td>215</td>
</tr>
<tr>
<td>10.2 The use of solar energy in steam reforming</td>
<td>215</td>
</tr>
<tr>
<td>10.3 The use of palladium membranes in solar steam reforming</td>
<td>216</td>
</tr>
<tr>
<td>10.4 Examples of solar steam reforming technology using palladium membranes</td>
<td>217</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
</tr>
<tr>
<td>11 Using palladium membranes for carbon capture in integrated gasification combined cycle (IGCC) power plants</td>
<td>221</td>
</tr>
<tr>
<td>M. Gazzani, G. Manzolini</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>221</td>
</tr>
<tr>
<td>11.2 Integrated gasification combined cycle (IGCC) plants</td>
<td>222</td>
</tr>
</tbody>
</table>
11.3 Handling sulphur in IGCC membrane plants 224
11.4 Palladium membranes for IGCC applications 230
11.5 Thermodynamic performance of IGCC plants using palladium membranes 234
11.6 Effect of the membrane operating conditions on plant performance 240
11.7 Economic assessment 242
11.8 Conclusions 244
References 244
Appendix: nomenclature 246

12 Using palladium membranes for carbon capture in natural gas combined cycle (NGCC) power plants: process integration and techno-economics 247
12.1 Introduction 247
12.2 Design of key components for the optimum operation of the power plant 249
12.3 Design of water gas shift (WGS) reactors and membrane reactors (MRs) 253
12.4 Purification, compression and recirculation 256
12.5 Determining optimum operating parameters 261
12.6 Optimized case study 266
12.7 Economic evaluation 270
12.8 Conclusions 282
References 283

13 Using palladium membrane reformers for hydrogen production 287
G. Iaquaniello, E. Palo, A. Salladini, B. Cucchiella
13.1 Introduction 287
13.2 KT – Kinetics Technology reformer and membrane module (RMM) pilot plant 290
13.3 RMM operation mode 292
13.4 RMM performance 296
13.5 Conclusions 300
References 300

14 Operation of a palladium membrane reformer system for hydrogen production: the case of Tokyo Gas 303
H. Yakabe, H. Kurokawa, Y. Shirasaki, I. Yasuda
14.1 Introduction 303
14.2 Membrane reformers (MRFs): key principles 304
14.3 Performance of the MRF system: hydrogen production and carbon capture 307
14.4 Durability of the membrane module 311
14.5 Long-term operation of the MRF system 313
14.6 Conclusions 317
Acknowledgements 317
References 318

15 Using palladium membrane-based fuel reformers for combined heat and power (CHP) plants 319
F. Gallucci, M. van Sint Annaland, L. Roses, G. Manzolini
15.1 Introduction 319
15.2 Current micro-CHP systems 319
15.3 Membrane reactor fuel processing for fuel cell-based micro-CHP systems 329
15.4 Comparison between fixed and fluidized bed membrane reactors for micro-CHP systems 334
15.5 Conclusions and future trends 341
Note for the reader 342
References 342

16 Review of palladium membrane use in biorefinery operations 345
K. Atsonios, K.D. Panopoulos, A. Doukelis, E. Kakaras
16.1 Introduction 345
16.2 Pure H₂ production 347
16.3 Main chemicals production 350
16.4 Fuel upgrading 352
16.5 By-products recovery through reforming 358
16.6 Further considerations for potential uses 360
16.7 Conclusions 360
References 361

Index 369