Reactive and Membrane-Assisted Separations

Edited by Philip Lutze and Andrzej Górkak

DE GRUYTER
Introduction to process intensification — 1
1.1 Background on process intensification — 1
1.1.1 Definitions of PI — 1
1.1.2 Performance indicators for PI — 4
1.2 Scales and principles behind process intensification — 5
1.2.1 PI at different scales — 5
1.2.2 Principle behind process intensification — 13
1.2.3 Process intensification within this textbook — 14
1.3 Process synthesis/design — 17
1.3.1 State of the art: process synthesis/design methods — 18
1.3.2 Process synthesis/design methods to achieve PI from a PSE toolbox — 20
1.4 Take-home messages — 30
1.5 Quiz — 30
1.5.1 General PI — 30
1.5.2 Process and plant: Hybrid separations — 30
1.5.3 Operation and equipment: Dividing wall columns — 30
1.5.4 Phase and transport: Equilibrium reaction — 31
1.5.5 Fundamental and molecular: Equilibrium reaction — 31
1.6 Solutions — 31

Hybrid separation processes — 37
2.1 Introduction — 37
2.2 Synthesis of hybrid separation processes — 41
2.2.1 Heuristic rules — 41
2.2.2 Thermodynamic insight — 42
2.2.3 Model-based approaches and mathematical programming — 55
2.3 Conceptual design of hybrid separation processes — 59
2.3.1 Process synthesis framework — 59
2.3.2 Shortcut methods — 61
2.3.3 Methods based on conceptual design models — 64
2.3.4 Methods based on detailed rate-based models — 69
6.8 Exercises — 287
6.8.1 Pervaporation — 287
6.8.2 Vapor permeation — 288
6.8.3 Membrane-assisted distillation — 289
6.8.4 Membrane-assisted reactive distillation — 292
6.9 Solutions — 295
6.9.1 Pervaporation — 295
6.9.2 Vapor permeation — 295
6.9.3 Membrane-assisted distillation — 296
6.9.4 Membrane-assisted reactive distillation — 300

Patrick Schmidt
7 OSN-assisted reaction and distillation processes — 312
7.1 Fundamentals — 312
7.1.1 Separation principle — 313
7.1.2 OSN membrane characterization methods — 315
7.1.3 Membrane materials and module types — 316
7.2 Applications — 318
7.3 Modeling — 322
7.3.1 Solution-diffusion models — 323
7.3.2 Pore-flow models — 324
7.3.3 Detailed models — 325
7.4 Design of OSN-assisted processes — 325
7.4.1 Conceptual design — 326
7.4.2 Detailed process design — 327
7.5 Examples — 331
7.5.1 Example 1: Integration of OSN and reaction — 333
7.5.2 Example 2: Integration of OSN and distillation — 343
7.6 Take-home messages — 353
7.7 Quiz — 354
7.7.1 OSN fundamentals — 354
7.7.2 Process design for OSN — 354
7.8 Exercises — 355
7.9 Solutions — 355
7.9.1 OSN fundamentals — 355
7.9.2 Process design for OSN — 358
7.9.3 Exercises — 359
Daniel Sudhoff

8 Centrifugally enhanced vapor/gas-liquid processing — 364

8.1 Fundamentals — 364

8.1.1 Historical Background — 364

8.1.2 Separation principles — 366

8.2 Applications — 371

8.2.1 Reactive systems — 371

8.2.2 Gas-liquid contacting systems — 372

8.2.3 Potential future applications — 378

8.3 Modeling and design — 380

8.3.1 Mass transfer evaluation — 381

8.3.2 Rotor design — 382

8.3.3 Design method for RPBs — 384

8.4 Detailed examples — 385

8.4.1 Example 1: Production of hypochlorous acid — 385

8.4.2 Example 2: Modular and flexible container systems — 386

8.4.3 Example 3: High-pressure distillation — 390

8.5 Take-home messages — 401

8.6 Quiz — 403

8.7 Exercises — 404

8.7.1 High-pressure distillation — 404

8.8 Solutions — 405

8.8.1 High-pressure distillation — 405

Index — 415