EMERGING TECHNOLOGIES FOR FOOD PROCESSING

SECOND EDITION

Edited by

DA-WEN SUN
University College Dublin, National University of Ireland, Dublin, Ireland
Contents

Preface to the 2nd Edition xi
Editor Biography xiii
Contributors xv

I
HIGH PRESSURE PROCESSING

1. High-Pressure Processing of Foods: An Overview
 YANG TAO, DA-WEN SUN, EAMONN HOGAN, ALAN L. KELLY
 1.1 Introduction 3
 1.2 Principles of HP Processing 3
 1.3 Use of HP to Improve Food Safety and Stability 7
 1.4 Effects of HP on Food Quality 12
 1.5 Other Applications of HP 15
 1.6 Modeling HP Processes 18
 1.7 Outlook for HP Processing of Food 19
 1.8 Conclusions 20

2. High-Pressure Processing of Salads and Ready Meals
 SRILATHA PANDRANGI, V.M. BALASUBRAMANIAM, YANG TAO, DA-WEN SUN
 2.1 Introduction 25
 2.2 Importance of Salads and Ready Meals 25
 2.3 Pressure Effects on Microorganisms 26
 2.4 The Effects of Pressure on Enzyme Activity 28
 2.5 The Effects of Pressure on Color 29
 2.6 The Effects of Pressure on Texture 29
 2.7 The Effects of Pressure on Nutrients 31
 2.8 Conclusions 31

3. High-Pressure Processing of Meats and Seafood
 FRÉDÉRIQUE DURANTON, HÉLÈNE SIMONIN, CLAIRE GUYON, STÉPHANIE JUNG, MARIE DE LAMBALLERIE
 3.1 Introduction 35
 3.2 HPP Effect on the Texture and Water Retention of Meat and Seafood 35
 3.3 The Effect of HPP on Sensory Quality 41
 3.4 The Chemical Safety of Pressure-Treated Meat Products 47
 3.5 Pressure-Assisted Processes Applied to Meat and Seafood 49
 3.6 Conclusions 55

4. High-Pressure Processing of Fruits and Fruit Products
 SÔNIA MARÍLIA CASTRO, JORGE ALEXANDRE SARAIVA
 4.1 Introduction 65
 4.2 Physicochemical Parameters 66
 4.3 Color 68
 4.4 Texture 69
 4.5 Flavor 70
 4.6 Vitamins 71
 4.7 Microorganisms 72
 4.8 Conclusions 73

5. Microbiological Aspects of High-Pressure Processing
 MONTSERRAT MOR-MUR, ROGER ESCRIU, JOSEP YUSTE
 5.1 Introduction 77
 5.2 Effects of High Pressure 77
 5.3 Factors Affecting the Effectiveness of Treatment 80
 5.4 Conclusions 87

II
PULSED ELECTRIC FIELDS PROCESSING

6. Overview of Pulsed Electric Fields Processing for Food
 STEFAN TOEPFL, CLAUDIA SIEMER, GUILLERMO SALDANA-NAVARRO, VOLKER HEINZ
 6.1 Introduction 93
 6.2 Historical Background 93
 6.3 Mechanisms of Action 94
 6.4 PEF Treatment System 97
 6.5 Main Processing Parameters 100
 6.6 Applications 104
 6.7 Conclusions 108
 Nomenclature 108

7. Pulsed Electric Field Processing of Liquid Foods and Beverages
 MANSEL W. GRIFFITHS, MARKUS WALKING-RIBEIRO
 7.1 Introduction 115
 7.2 PEF Technology 116
 7.3 Mechanisms of Microbial Inactivation 117
 7.4 Equipment 119
III

OTHER NONTHERMAL PROCESSING
TECHNIQUES

11. Recent Developments in Osmotic Dehydration
NAVIN K. RASTOGI, K.S.M.S. RAGHAVARAO, K. NIRANJAN

11.1 Introduction 181
11.2 Mechanism of Osmotic Dehydration 182
11.3 Effect of Process Parameters on Mass Transfer and Structure 184
11.4 Determination of Moisture and Solid Diffusion Coefficients 188

12. Athermal Membrane Processes for the Concentration of Liquid Foods and Natural Colors
K.S.M.S. RAGHAVARAO, M.C. MADHUSUDHAN, A. HRISHIKESH TAVANANDI, K. NIRANJAN

12.1 Introduction 213
12.2 Existing Methods 213
12.3 Osmotic Membrane Distillation 215
12.4 Direct Osmosis 222
12.5 Membrane Modules 228
12.6 Applications 229
12.7 Integrated Membrane Processes 230
12.8 Suggestions for Future Work 232
12.9 Conclusions 233
Nomenclature 233

13. High-Intensity Pulsed Light Technology
DOMENICO CACACE, LUIGI PALMIERI

13.1 Introduction 239
13.2 Principles of PLT 239
13.3 Systems for PLT 241
13.4 Effects of PL on Microorganisms 243
13.5 Technological Aspects of PLT 245
13.6 Effects of PL on Food Quality and Components 254
13.7 Conclusions 255

FRANCISCO J. TRUJILLO, DAVID J. GEVEKE

14.1 Introduction 259
14.2 Radio Frequency Electric Fields Equipment 260
14.3 Modeling of Radio Frequency Electric Fields 263
14.4 RF Nonthermal Inactivation of Yeast 264
14.5 Bench Scale RF Nonthermal Inactivation of Bacteria and Spores 264
14.6 Pilot-Scale RF Nonthermal Inactivation of Bacteria 266
14.7 Electrical Costs 267
14.8 Conclusions 267

15. Application of Ultrasound
LARYSA PANIWNYK

15.1 Introduction 271
15.2 Fundamentals of Ultrasound 272
15.3 Ultrasound as a Food Preservation Tool 276
15.4 Ultrasound as a Processing Aid 279
15.5 Ultrasound Effects on Food Properties 286
15.6 Conclusions 288
CONTENTS

16. Irradiation
 MONIQUE LACROIX
 16.1 Introduction 293
 16.2 Definition of Irradiation 294
 16.3 Gamma and X-ray Irradiation 295
 16.4 UV Irradiation 297
 16.5 Combined Treatments 298
 16.6 Conclusions 307

17. New Chemical and Biochemical Hurdles
 BRIJESH K. TIWARI
 17.1 Introduction 313
 17.2 Novel Antimicrobial Agents 313
 17.3 Essential Oils 314
 17.4 Antimicrobial Peptides 316
 17.5 Novel Chemical Antimicrobial Agents 318
 17.6 Quantification of Minimum and Noninhibitory Concentrations 320
 17.7 Biochemical Hurdles 320
 17.8 Conclusions 322

18. Decontamination of Foods by Cold Plasma
 BRENDA A. NIEMIRA
 18.1 Introduction 327
 18.2 The Chemistry of Cold Plasma 327
 18.3 Low-Pressure Cold Plasmas 328
 18.4 Atmospheric Pressure Cold Plasmas 330
 18.5 Economics of Cold Plasma 332
 18.6 Conclusions 332

19. Opportunities and Challenges in the Application of Ozone in Food Processing
 B.S. PRIYANKA, NAVIN K. RASTOGI, BRIJESH K. TIWARI
 19.1 Introduction 335
 19.2 Physicochemical Properties 336
 19.3 Oxidation Reactions 336
 19.4 Generation of Ozone 337
 19.5 Solubility of Ozone in Water 337
 19.6 Methods for Mixing Ozone 338
 19.7 Determination and Monitoring of Ozone 338
 19.8 Critical Factors Affecting the Efficacy of Ozone 338
 19.9 Application in Food Processing 339
 19.10 Synergistic Effects of Ozone 353
 19.11 Conclusions 354

IV

ALTERNATIVE THERMAL PROCESSING

20. Recent Developments in Microwave Heating
 SEMIN O. OZKOC, GÜLÜM SUMNU, SERPIL SAHIN
 20.1 Introduction 361
 20.2 Dielectric Properties of Foods 361
 20.3 Heat and Mass Transfer in Microwave Processing 362
 20.4 Microwave Processing of Foods 363
 20.5 Conclusions 377
 Nomenclature 377

21. Radio-Frequency Processing
 VALÉRIE ORSAT, G.S. VIJAYA RAGHAVAN
 21.1 Introduction 385
 21.2 Dielectric Heating 386
 21.3 Material Properties 388
 21.4 Adopting RF Heating 389
 21.5 RF Heating Applications 392
 21.6 RF Drying Applications 394
 21.7 Conclusions 394
 Nomenclature 395

22. Ohmic Heating
 ADELINE GOULLIEUX, JEAN-PIERRE PAIN
 22.1 Introduction 399
 22.2 Fundamentals of Ohmic Heating 400
 22.3 Electrical Conductivity 401
 22.4 Generic Configurations 405
 22.5 Modeling 407
 22.6 Treatment of Products 414
 22.7 Conclusions 420
 Nomenclature 422

23. Combined Microwave Vacuum Drying
 CHRISTINE H. SCAMAN, TIMOTHY D. DURANCE, LIANA DRUMMOND, DA-WEN SUN
 23.1 Introduction 427
 23.2 Microwaves 428
 23.3 Dielectric Properties of Food 429
 23.4 Thermal Properties of Food 430
 23.5 Characteristics of Microwave Vacuum Drying 430
 23.6 Combination of Microwave Vacuum with Other Processes 436
 23.7 Equipment 437
 23.8 Modeling of Microwave Vacuum-Drying 438
 23.9 Microwave Freeze-Drying 439
 23.10 Other Applications of Microwave Vacuum Processing 440
 23.11 Commercial Potential 441
 23.12 Conclusions 441
 Nomenclature 441

24. Recent Advances in Hybrid Drying Technologies
 KIAN JON CHUA, SIAW KIANG CHOU
 24.1 Introduction 447
 24.2 Product Quality Degradation During Dehydration 447
 24.3 Hybrid Drying Systems 449
 24.4 Conclusions 457
25. Infrared Heating
ZHONGLI PAN, GRIFFITHS G. ATUNGULU, XUAN LI

25.1 Introduction 461
25.2 Fundamentals of IR Heating 461
25.3 Computational Modeling of IR Heating Process 464
25.4 Application of IR Heating for Food and Agricultural Processing 465
25.5 Outlook of IR Heating for Food and Agricultural Processing 471
25.6 Conclusions 472
Nomenclature 472

V
INNOVATIONS IN FOOD REFRIGERATION

26. Vacuum Cooling of Foods
LIANA DRUMMOND, LIYUN ZHENG, DA-WEN SUN

26.1 Introduction 477
26.2 Vacuum Cooling Principles, Process, and Equipment 477
26.3 Vacuum Cooling Applications in the Food Industry 480
26.4 Mathematical Modeling of Vacuum-Cooling Process 486
26.5 Advantages and Disadvantages of Vacuum Cooling 487
26.6 Factors Affecting Vacuum-Cooling Process 489
26.7 Conclusions 491
Nomenclature 491

27. Ultrasonic Assistance for Food Freezing
HOSSEIN KIANI, LIYUN ZHENG, DA-WEN SUN

27.1 Introduction 495
27.2 Power Ultrasound Generation and Equipment 496
27.3 Acoustic Effects on the Food Freezing Process 498
27.4 Factors Affecting Power Ultrasound Efficiency 507
27.5 Applications 509
27.6 Conclusions 511

28. High-Pressure Freezing
PEDRO D. SANZ, LAURA OTERO

28.1 Introduction 515
28.2 High Pressure for Freezing: Principles and Equipment 515
28.3 Types of High-Pressure Freezing Processes 517
28.4 Microbial and Enzymatic Inactivation after High-Pressure Freezing 524

28.5 Modeling High-Pressure Freezing Processes 525
28.6 Future Perspectives 531
28.7 Conclusions 532
Nomenclature 532

29. Controlling the Freezing Process with Antifreeze Proteins
HANS RAMLØV, JOHANNES L. JOHNSEN

29.1 Introduction 539
29.2 Water as the Solvent of Life 539
29.3 The Physical Characteristics of Ice 540
29.4 Historical Review of AFP Research 544
29.5 Cold Tolerance in Cold-Blooded Animals 545
29.6 AFPs in Various Organisms 546
29.7 Types of AFP 547
29.8 Antifreeze Mechanism 550
29.9 Enhancement of Antifreeze Activity 553
29.10 The Use of AFP in Food Preservation 554
29.11 Physical and Chemical Characteristics of AFPs 555
29.12 Conclusions 556

30. Freezing Combined with Electrical and Magnetic Disturbances
EPAMEINONDAS XANTHAKIS, ALAIN LE-BAIL, MICHEL HAVET

30.1 Introduction 563
30.2 Water Properties and Freezing 563
30.3 Phase Changes Under Electrical Disturbances 565
30.4 Magnetic Fields and Phase Change 566
30.5 Research on Freezing Under an Electric Field 567
30.6 Electro and Magnetic Electric Fields or Oscillating Electric Fields 574
30.7 Patent Search 575
30.8 Conclusions 577
Nomenclature 577

VI
MINIMAL PROCESSING

31. Minimal Processing of Fresh Fruit, Vegetables, and Juices
FRANCISCO ARTÉS, ANA ALLENDE

31.1 Introduction 583
31.2 Factors and Processing Operations that Affect the Quality of Minimally Processed Plant Foods 585
31.3 Emerging Technologies for Keeping the Microbial and Sensory Quality of MPFVs 589