Biofiber Reinforcement in Composite Materials

Edited by
Omar Faruk and Mohini Sain
Part I Bast fibers

1 The use of jute fibers as reinforcements in composites
J. A. Khan, National University of Bangladesh, Bangladesh and M. A. Khan, Bangladesh Atomic Energy Commission, Bangladesh

1.1 Introduction 3
1.2 Composition and properties of jute fibers 4
1.3 Processing and properties of grafted jute fibers 7
1.4 Processing and properties of alkali-treated jute fibers 8
1.5 Characterization of jute fibers 10
1.6 Manufacture of jute fiber composites 11
1.7 Preparation and properties of irradiated jute composites 12
1.8 Preparation and properties of oxidized jute composites 15
1.9 Preparation and properties of mercerized jute composites 18
1.10 Preparation and properties of jute composites modified by other processes 20
1.11 Types and properties of hybrid jute composites 24
1.12 Applications of jute composites 26
1.13 Conclusion 29
1.14 References 29

2 The use of flax fibres as reinforcements in composites
J. Müssig and K. Haag, Hochschule Bremen – University of Applied Sciences, Germany

2.1 Introduction 35
2.2 Key fibre properties 40
Contents

2.3 Cultivation and quality issues 48
2.4 Processing as a fibre reinforcement for composites 54
2.5 Integration into the matrix 61
2.6 Assessing the performance of the composites 69
2.7 Applications 73
2.8 Summary: strengths and weaknesses 73
2.9 Future trends 80
2.10 Sources of further information and advice 81
2.11 Acknowledgements 82
2.12 References 82

<table>
<thead>
<tr>
<th>3</th>
<th>The use of hemp fibres as reinforcements in composites</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. N. Dhakal and Z. Zhang, University of Portsmouth, UK</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>Hemp fibre</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Key fibre properties</td>
<td>89</td>
</tr>
<tr>
<td>3.4</td>
<td>Cultivation and quality issues</td>
<td>90</td>
</tr>
<tr>
<td>3.5</td>
<td>Processing of hemp as fibre reinforcement for composites</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>Surface modifications of hemp fibre and their effects on properties</td>
<td>92</td>
</tr>
<tr>
<td>3.7</td>
<td>Fibre–matrix interaction</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>Current applications of hemp fibres</td>
<td>97</td>
</tr>
<tr>
<td>3.9</td>
<td>Future trends</td>
<td>99</td>
</tr>
<tr>
<td>3.10</td>
<td>Summary</td>
<td>100</td>
</tr>
<tr>
<td>3.11</td>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>The use of ramie fibers as reinforcements in composites</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y. Du, N. Yan and M. T. Kortschot, University of Toronto, Canada</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Ramie fiber properties</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Improving fiber/matrix interfacial bonding</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Ramie fiber-reinforced polymer composites</td>
<td>119</td>
</tr>
<tr>
<td>4.5</td>
<td>Factors affecting composite mechanical properties</td>
<td>126</td>
</tr>
<tr>
<td>4.6</td>
<td>Other studies of ramie fiber-reinforced composites</td>
<td>128</td>
</tr>
<tr>
<td>4.7</td>
<td>Applications</td>
<td>131</td>
</tr>
</tbody>
</table>
4.8 Conclusions
4.9 References

5 The use of kenaf fibers as reinforcements in composites
H. Akil, M. H. Zamri and M. R. Osman, University of Sains, Malaysia

5.1 Introduction
5.2 Processing of kenaf fibers
5.3 Matrices for kenaf fiber-reinforced composites
5.4 Fabrication of kenaf fiber-reinforced composites (KFRC)
5.5 Performance of KFRC
5.6 Applications of KFRC
5.7 Conclusion
5.8 References

Part II Leaf fibers

6 The use of sisal and henequen fibres as reinforcements in composites
Y. Li and Y. O. Shen, Tongji University, China

6.1 Introduction
6.2 The microstructures of sisal fibres
6.3 The mechanical properties of sisal fibres
6.4 Manufacture of sisal fibre-reinforced composites
6.5 Mechanical properties of sisal fibre-reinforced composites: interfacial properties
6.6 Mechanical properties of sisal fibre-reinforced composites: interlaminar fracture toughness
6.7 Mechanical properties of unidirectional sisal fibre-reinforced composites
6.8 Effect of fibre twist on the mechanical properties of sisal fibre-reinforced composites
6.9 Durability of sisal fibre-reinforced composites: effects of moisture absorption
6.10 Effects of ultraviolet (UV) light on the mechanical properties of sisal fibre-reinforced composites
6.11 Applications of sisal fibre-reinforced composites
6.12 Conclusion and future trends
6.13 Acknowledgements
6.14 References
Contents

7 The use of pineapple leaf fibers (PALFS) as reinforcements in composites
A. L. Leão, São Paulo State University (UNESP), Brazil, B. M. Cherian and S. Narine, Trent University, Canada, S. F. Souza and M. Sain, University of Toronto, Canada and S. Thomas, Mahatma Gandhi University, India

7.1 Introduction 211
7.2 The pineapple plant 213
7.3 Pineapple production 215
7.4 Pineapple culture in Brazil and worldwide 215
7.5 Fiber extraction 216
7.6 Potential of fiber production plant 218
7.7 Fiber properties 220
7.8 Pineapple leaf fiber (PALF)-reinforced polymer composites 222
7.9 Application of pineapple fibers and composites 226
7.10 Conclusions 232
7.11 References and further reading 233

8 The use of banana and abaca fibres as reinforcements in composites
A. A. Mamun and H. P. Heim, University of Kassel, Germany, O. Faruk, University of Toronto, Canada and A. K. Bledzki, University of Kassel, Germany and West Pomeranian University of Technology, Poland

8.1 Introduction 236
8.2 Banana and abaca plants and their cultivation 237
8.3 Fibre extraction 239
8.4 Fibre structure and properties 241
8.5 Disadvantages of banana and abaca fibres as reinforcement materials 244
8.6 Surface modification of fibres 246
8.7 Processing of banana/abaca fibre-reinforced composites 250
8.8 Performance of banana/abaca fibre-reinforced thermoset polymer composites 252
8.9 Performance of banana/abaca fibre-reinforced thermoplastic polymer composites 257
8.10 Performance of banana/abaca fibre-reinforced biodegradable polymer composites 267
8.11 Conclusions 269
8.12 References 269
9 The use of palm leaf fibres as reinforcements in composites
D. KOCAK and S. I. MISTIK, Marmara University, Turkey

9.1 Introduction 273
9.2 Cultivation and uses of palm leaf fibres 274
9.3 Properties of palm leaf fibres 275
9.4 Surface modification of palm leaf fibres 276
9.5 The use of palm leaf fibres as reinforcements in polymer nanocomposites 279
9.6 Conclusion 280
9.7 References 280

Part III Seed fibers

10 The use of coir/coconut fibers as reinforcements in composites
D. VERMA, Indian Institute of Technology, B.H.U., Varanasi, India and P. C. GOPE, College of Technology, Pantnagar, India

10.1 Introduction 285
10.2 The coconut plant and its cultivation 285
10.3 Preparation/extraction of coir fibers from coconut husk 288
10.4 Surface modification of coconut fibers 289
10.5 The properties of coir fiber-reinforced thermoset polymer composites 291
10.6 The properties of coir fiber-reinforced thermoplastic polymer composites 302
10.7 Characterization of coconut/coir fiber-reinforced composites 312
10.8 Advantages of using coconut/coir fibers as reinforcement in composites 316
10.9 Conclusions 316
10.10 Acknowledgment 316
10.11 References 317

11 The use of cotton fibers as reinforcements in composites
S. K. BAJPAI and G. MARY, Government Model Science College (Autonomous), India and N. CHAND, Advanced Materials and Processes Research Institute (AMPRI) (CSIR), India

11.1 Introduction 320
11.2 Physical properties of cotton fibers 320
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Chemical and other properties of cotton fibers</td>
<td>323</td>
</tr>
<tr>
<td>11.4 Cultivation of and quality issues affecting cotton fibers</td>
<td>323</td>
</tr>
<tr>
<td>11.5 Processing of cotton fibers as reinforcements in composites</td>
<td>324</td>
</tr>
<tr>
<td>11.6 Assessing the antibacterial activity of biomedical composites</td>
<td>332</td>
</tr>
<tr>
<td>reinforced with composite cotton fibers</td>
<td></td>
</tr>
<tr>
<td>11.7 Assessing the mechanical properties of biomedical and other</td>
<td>333</td>
</tr>
<tr>
<td>composites reinforced with cotton fibers</td>
<td></td>
</tr>
<tr>
<td>11.8 Summary</td>
<td>340</td>
</tr>
<tr>
<td>11.9 References</td>
<td>340</td>
</tr>
<tr>
<td>12 The use of oil palm biomass (OPB) fibers as reinforcements in</td>
<td>342</td>
</tr>
<tr>
<td>composites</td>
<td></td>
</tr>
<tr>
<td>M. D. H. Beg, M. F. Mina, R. M. Yunus and</td>
<td></td>
</tr>
<tr>
<td>A. K. M. Moshiul Alam, Universiti Malaysia</td>
<td></td>
</tr>
<tr>
<td>Pahang, Malaysia</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>342</td>
</tr>
<tr>
<td>12.2 Oil palm biomass fibers</td>
<td>343</td>
</tr>
<tr>
<td>12.3 Surface modifications of empty fruit bunch (EFB) fibers</td>
<td>350</td>
</tr>
<tr>
<td>12.4 Processing methods for EFB reinforced composites</td>
<td>350</td>
</tr>
<tr>
<td>12.5 Effects of fiber treatments on the structures and</td>
<td>351</td>
</tr>
<tr>
<td>properties of composites</td>
<td></td>
</tr>
<tr>
<td>12.6 Applications of EFB fiber-based composites</td>
<td>372</td>
</tr>
<tr>
<td>12.7 Conclusions</td>
<td>374</td>
</tr>
<tr>
<td>12.8 References</td>
<td>375</td>
</tr>
</tbody>
</table>

Part IV Grass, reed and cane fibers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 The use of rice straw and husk fibers as reinforcements in composites</td>
<td>385</td>
</tr>
<tr>
<td>M. Bassyouni, King Abdulaziz University, Saudi Arabia and Higher</td>
<td></td>
</tr>
<tr>
<td>Technological Institute, Egypt and S. Waheed Ul Hasan, King Abdulaziz</td>
<td></td>
</tr>
<tr>
<td>University, Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>385</td>
</tr>
<tr>
<td>13.2 Cultivation and processing of rice straw and rice husk</td>
<td>386</td>
</tr>
<tr>
<td>13.3 Key fiber properties</td>
<td>387</td>
</tr>
<tr>
<td>13.4 Composite processing: surface treatment</td>
<td>395</td>
</tr>
<tr>
<td>13.5 Critical issues for the integration of fibers into the matrix</td>
<td>404</td>
</tr>
</tbody>
</table>
13.6 Processing of thermoset and thermoplastic composites incorporating rice straw/rice husk (RS/RH) fiber reinforcements 405

13.7 Evaluating the performance of composites reinforced with RS/RH fibers 407

13.8 Conclusion 419

13.9 References 420

14 The use of wheat straw fibres as reinforcements in composites 423

S. Panthapulakkal and M. Sain, University of Toronto, Canada

14.1 Introduction 423

14.2 Worldwide availability and economics 424

14.3 Structure and composition of wheat straw 426

14.4 Wheat straw as a polymer composite reinforcement 432

14.5 Processing of wheat straw fibre-reinforced polymer composites 440

14.6 Properties of wheat straw fibre-reinforced composites 442

14.7 Potential applications of wheat straw fibre-reinforced composites 445

14.8 Future trends 446

14.9 Conclusions 450

14.10 References 450

15 The use of maize, oat, barley and rye fibres as reinforcements in composites 454

A. A. Mamun and H. P. Heim, University of Kassel, Germany and A. K. Bledzki, West Pomeranian University of Technology, Poland

15.1 Introduction 454

15.2 Types of reinforcing fibre 456

15.3 Fibre components and key properties 459

15.4 Surface modification of fibres 462

15.5 Processing and performance: maize and oat flour composites 469

15.6 Processing and performance: barley and rye fibre composites 474

15.7 Conclusion 484

15.8 References 485
16 The use of bamboo fibres as reinforcements in composites
H. P. S. Abdul Khalil, M. S. Alwani, M. N. Islam, S. S. Suhaily, R. Dungani and Y. M. H'ng,
Universiti Sains Malaysia, Malaysia and M. Jawaid,
Universiti Putra Malaysia, Malaysia

16.1 Introduction 488
16.2 Structure of bamboo 490
16.3 Chemical properties of bamboo 492
16.4 Mechanical properties of bamboo 494
16.5 Cultivation of bamboo, fibre extraction and surface modification 494
16.6 Properties of bamboo fibre-reinforced polymer composites 496
16.7 Applications of bamboo composites 506
16.8 Sustainable and renewable products from bamboo composites 510
16.9 Future trends 512
16.10 Conclusions 515
16.11 References 516

17 The use of sugarcane bagasse fibres as reinforcements in composites
H. Hajiha and M. Sain, Centre for Biocomposites and Biomaterials Processing, Canada

17.1 Introduction 525
17.2 Properties of sugarcane bagasse fibres 526
17.3 Applications 527
17.4 Surface treatment techniques 530
17.5 Evaluation of fibre treatment techniques 531
17.6 Assessing composite performance 539
17.7 Future trends 545
17.8 Conclusion 546
17.9 References 547

Part V Wood, cellulosic and other fibres

18 Isolation and application of cellulosic fibres in composites
R. A. Shanks, RMIT University, Australia

18.1 Introduction 553
18.2 Types of cellulosic fibre reinforcement and their properties 554
18.3 Cultivation and fibre separation processes 556
18.4 Fibre processing 559
18.5 Assessing performance 561
18.6 Applications 564
18.7 Conclusions 565
18.8 Sources of further information and advice 565
18.9 References 568

19 The use of biobased nanofibres in composites 571
S. BANDYOPADHYAY-GHOSH and S. B. GHOSH,
Birla Institute of Technology and Science, Pilani, India
and University of Toronto, Canada and M. SAIN, University
of Toronto, Canada

19.1 Introduction 571
19.2 Biobased nanoreinforcements 572
19.3 Ultrastructure of cellulose nanoreinforcements 575
19.4 Source materials for cellulose nanoreinforcements 578
19.5 Classification of cellulose nanoreinforcements 579
19.6 Synthesis/isolation of cellulose nanoreinforcements 583
19.7 Surface modification of cellulose nanoreinforcements 590
19.8 Characterization of cellulose nanoreinforcements 594
19.9 Matrices 596
19.10 Incorporation of biobased nanoreinforcements into
matrices 600
19.11 Nanocomposites 604
19.12 Challenges 621
19.13 Future trends 624
19.14 Conclusions 626
19.15 References 626

20 The use of wood fibers as reinforcements
in composites 648
L. M. MATUANA, Michigan State University, USA and
N. M. STARK, USDA Forest Service, Forest Products
Laboratory, USA

20.1 Introduction: characteristics of wood 648
20.2 Fiber processing and composite manufacturing 652
20.3 Mechanical performance of wood plastic
composites (WPCs) 656
20.4 The effect of moisture on composite performance 669
20.5 The effect of temperature on composite performance 672
20.6 The effect of weathering on composite performance 674
20.7 The effect of biological attack on composite performance 676
20.8 Trends in materials and manufacturing techniques 678
20.9 Current and emerging applications 681
20.10 References 682

21 The use of Luffa cylindrica fibres as reinforcements in composites 689
D. KOCAK, S. I. MISTIK and M. AKALIN, Marmara University, Turkey and N. MERDAN, Istanbul Commerce University, Turkey
21.1 Introduction 689
21.2 Properties and surface treatment of Luffa cylindrica fibres 690
21.3 Applications and performance of Luffa cylindrica fibres as reinforcements in composites 691
21.4 Nanocomposites incorporating Luffa cylindrica fibres 694
21.5 Conclusion 696
21.6 References 697

22 The use of curaua fibers as reinforcements in composites 700
S. F. SOUZA and M. FERREIRA, Universidade Federal do ABC, Brazil, M. SAIN, University of Toronto, Canada and M. Z. FERREIRA, H. F. PUPO, B. M. CHERIAN and A. L. LEÃO, São Paulo State University, Brazil
22.1 Introduction 700
22.2 Curaua fibers 701
22.3 Composites using curaua fibers 705
22.4 Curaua nanofibers 712
22.5 Nanocomposites with curaua fibers 715
22.6 Conclusion 718
22.7 References 718

Index 721