Contents

Preface
page xiii

1 Introduction: the need for a quantum theory
1.1 Introducing quantum mechanics

2 Experimental foundations of quantum theory
2.1 Black-body radiation
2.1.1 Kirchhoff laws
2.1.2 Electromagnetic field in a hollow cavity
2.1.3 Stefan and displacement laws
2.1.4 Planck model
2.1.5 Contributions of Einstein
2.1.6 Dynamic equilibrium of the radiation field
2.2 Photoelectric effect
2.2.1 Classical model
2.2.2 Quantum theory of the effect
2.3 Compton effect
2.3.1 Thomson scattering
2.4 Particle-like behaviour and the Heisenberg picture
2.4.1 Atomic spectra and the Bohr hypotheses
2.5 Corpuscular character: the experiment of Franck and Hertz
2.6 Wave-like behaviour and the Bragg experiment
2.6.1 Connection between the wave picture and the discrete-level picture
2.7 Experiment of Davisson and Germer
2.8 Interference phenomena among material particles
Appendix 2.A Classical electrodynamics and the Planck formula

3 Waves and particles
3.1 Waves: d'Alembert equation
3.2 Particles: Hamiltonian equations
3.2.1 Poisson brackets among velocity components for a charged particle
3.3 Homogeneous linear differential operators and equations of motion
3.4 Symmetries and conservation laws
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 Homomorphism between $SU(2)$ and $SO(3)$</td>
<td>67</td>
</tr>
<tr>
<td>3.5 Motivations for studying harmonic oscillators</td>
<td>72</td>
</tr>
<tr>
<td>3.6 Complex coordinates for harmonic oscillators</td>
<td>74</td>
</tr>
<tr>
<td>3.7 Canonical transformations</td>
<td>75</td>
</tr>
<tr>
<td>3.8 Time-dependent Hamiltonian formalism</td>
<td>76</td>
</tr>
<tr>
<td>3.9 Hamilton–Jacobi equation</td>
<td>78</td>
</tr>
<tr>
<td>3.10 Motion of surfaces</td>
<td>81</td>
</tr>
<tr>
<td>Appendix 3.A Space–time picture</td>
<td>83</td>
</tr>
<tr>
<td>3.A.1 Inertial frames and comparison dynamics</td>
<td>84</td>
</tr>
<tr>
<td>3.A.2 Lagrangian descriptions of second-order differential equations</td>
<td>85</td>
</tr>
<tr>
<td>3.A.3 Symmetries and constants of motion</td>
<td>88</td>
</tr>
<tr>
<td>3.A.4 Symmetries and constants of motion in the Hamiltonian formalism</td>
<td>91</td>
</tr>
<tr>
<td>3.A.5 Equivalent reference frames</td>
<td>92</td>
</tr>
<tr>
<td>4 Schrödinger picture, Heisenberg picture and probabilistic aspects</td>
<td>94</td>
</tr>
<tr>
<td>4.1 From classical to wave mechanics</td>
<td>94</td>
</tr>
<tr>
<td>4.1.1 Properties of the Schrödinger equation</td>
<td>96</td>
</tr>
<tr>
<td>4.1.2 Physical interpretation of the wave function</td>
<td>100</td>
</tr>
<tr>
<td>4.1.3 Mean values</td>
<td>103</td>
</tr>
<tr>
<td>4.1.4 Eigenstates and eigenvalues</td>
<td>106</td>
</tr>
<tr>
<td>4.2 Probability distributions associated with vectors in Hilbert spaces</td>
<td>106</td>
</tr>
<tr>
<td>4.3 Uncertainty relations for position and momentum</td>
<td>109</td>
</tr>
<tr>
<td>4.4 Transformation properties of wave functions</td>
<td>111</td>
</tr>
<tr>
<td>4.4.1 Direct approach to the transformation properties of the Schrödinger equation</td>
<td>113</td>
</tr>
<tr>
<td>4.4.2 Width of the wave packet</td>
<td>114</td>
</tr>
<tr>
<td>4.5 Heisenberg picture</td>
<td>115</td>
</tr>
<tr>
<td>4.6 States in the Heisenberg picture</td>
<td>119</td>
</tr>
<tr>
<td>4.7 ‘Conclusions’: relevant mathematical structures</td>
<td>120</td>
</tr>
<tr>
<td>5 Integrating the equations of motion</td>
<td>122</td>
</tr>
<tr>
<td>5.1 Green kernel of the Schrödinger equation</td>
<td>122</td>
</tr>
<tr>
<td>5.1.1 Discrete version of the Green kernel by using a fundamental set of solutions</td>
<td>125</td>
</tr>
<tr>
<td>5.1.2 General considerations on how we use solutions of the evolution equation</td>
<td>127</td>
</tr>
<tr>
<td>5.2 Integrating the equations of motion in the Heisenberg picture: harmonic oscillator</td>
<td>129</td>
</tr>
<tr>
<td>6 Elementary applications: one-dimensional problems</td>
<td>131</td>
</tr>
<tr>
<td>6.1 Boundary conditions</td>
<td>131</td>
</tr>
<tr>
<td>6.1.1 Particle confined by a potential</td>
<td>132</td>
</tr>
<tr>
<td>6.1.2 A closer look at improper eigenfunctions</td>
<td>134</td>
</tr>
</tbody>
</table>
10 Symmetries in quantum mechanics
10.1 Meaning of symmetries
 10.1.1 Transformations that preserve the description
10.2 Transformations of frames and corresponding quantum symmetries
 10.2.1 Rototranslations
10.3 Galilei transformations
10.4 Time translation
10.5 Spatial reflection
10.6 Time reversal
10.7 Problems

11 Approximation methods
11A Perturbation theory
 11A.1 Approximation of eigenvalues and eigenvectors
 11A.2 Hellmann–Feynman theorem
 11A.3 Virial theorem
 11A.4 Anharmonic oscillator
 11A.5 Secular equation for problems with degeneracy
 11A.6 Stark effect
 11A.7 Zeeman effect
 11A.8 Anomalous Zeeman effect
 11A.9 Relativistic corrections (α^2) to the hydrogen atom
 11A.10 Variational method
 11A.11 Time-dependent formalism
 11A.12 Harmonic perturbations
 11A.13 Fermi golden rule
 11A.14 Towards limiting cases of time-dependent theory
 11A.15 Adiabatic switch on and off of the perturbation
 11A.16 Perturbation suddenly switched on
 11A.17 Two-level system
 11A.18 The quantum K^0-K^0 system
 11A.19 The quantum system of three active neutrinos

11B Jeffreys–Wentzel–Kramers–Brillouin method
 11B.1 The JWKB method
 11B.2 Potential barrier
 11B.3 Energy levels in a potential well
 11B.4 α-decay

11C Scattering theory
 11C.1 Aims and problems of quantum scattering theory
 11C.2 Time-dependent scattering
 11C.3 An example: classical scattering
Contents

11C.4 Time-independent scattering
- 11C.4.1 One-dimensional stationary description of scattering 287

11C.5 Integral equation for scattering problems 289

11C.6 The Born series 293

11C.7 Partial wave expansion 295

11C.8 s-Wave scattering states in the square-well potential 298

11C.9 Problems 299

12 Modern pictures of quantum mechanics 301
- 12.1 Quantum mechanics on phase space 301
- 12.2 Representations of the group algebra 304
- 12.3 Moyal brackets 308
- 12.4 Tomographic picture: preliminaries 309
- 12.5 Tomographic picture 311
 - 12.5.1 Classical tomography 312
 - 12.5.2 Quantum tomography 313
- 12.6 Pictures of quantum mechanics for a two-level system 315
 - 12.6.1 von Neumann picture 317
 - 12.6.2 Heisenberg picture 319
 - 12.6.3 Unitary group $U(2)$ 320
 - 12.6.4 A closer look at states in the Heisenberg picture 321
 - 12.6.5 Weyl picture 322
 - 12.6.6 Probability distributions and states 324
 - 12.6.7 Ehrenfest picture 325
- 12.7 Composite systems 329
 - 12.7.1 Inner product in tensor spaces 330
 - 12.7.2 Complex linear operators in tensor spaces 330
 - 12.7.3 Composite systems and Kronecker products 331
- 12.8 Identical particles 332
 - 12.8.1 Product basis 332
 - 12.8.2 Exchange symmetry 333
 - 12.8.3 Exchange interaction 334
 - 12.8.4 Two-electron atoms 335
- 12.9 Generalized paraFermi and paraBose oscillators 337
- 12.10 Problems 337

13 Formulations of quantum mechanics and their physical implications 339
- 13.1 Towards an overall view 339
- 13.2 From Schrödinger to Feynman 339
 - 13.2.1 Remarks on the Feynman approach 341
- 13.3 Path integral for systems interacting with an electromagnetic field 344
- 13.4 Unification of quantum theory and special relativity 346
- 13.5 Dualities: quantum mechanics leads to new fundamental symmetries 351
14 Exam problems

14.1 End-of-year written exams

15 Definitions of geometric concepts

15.1 Outline
15.2 Groups
15.3 Lie groups
15.4 Symmetry
15.5 Various definitions of vector fields
15.6 Covariant vectors and 1-form fields
15.7 Lie algebras
15.8 Lie derivatives
15.9 Symplectic vector spaces
15.10 Homotopy maps and simply connected spaces
 15.10.1 Examples of spaces which are or are not simply connected
15.11 Diffeomorphisms of manifolds
15.12 Foliations of manifolds

References

Index