Braiding Technology for Textiles

Y. Kyosev
## Contents

Woodhead Publishing Series in Textiles xi
Preface xix
Acknowledgements xxiii

### 1 Introduction: the main types of braided structure using maypole braiding technology 1

1.1 Introduction 1
1.2 Maypole braiding 1
1.3 Spiral braiding 13
1.4 Lace braiding 15
1.5 Bobbinet machines 18
1.6 Cartesian braiding 19
1.7 Machine and product classification 22
1.8 Sources of further information and advice 23
References 24

### Part One Patterning and design of braided structures manufactured using maypole braiding technology 27

#### 2 Patterning of braided products 29

2.1 Introduction 29
2.2 Horn gears 29
2.3 Carrier and bobbin arrangement 30
2.4 Structural and pattern representation of maypole braids 34
2.5 Braiding pattern basics 36
2.6 Pattern type and carrier arrangement 39
2.7 Quality and length issues of using ply yarns 45
References 46

#### 3 Structural design of flat and tubular braids 47

3.1 Introduction 47
3.2 Flat braids 47
3.3 Application examples 57
3.4 Tubular braids 61
3.5 Advanced patterning 67
References 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Colour design of tubular braids</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Colour patterning basics</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>General remarks about the colour design of tubular braids</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Pattern development sequence for tubular braids</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>Common patterns for tubular structures</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Sources of further information and advice</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Colour design of flat braids</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Basics of colour patterning of flat braids</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Pattern development sequence for flat braids</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Popular patterns for flat structures with a floating length of 1</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Popular patterns for flat structures with a floating length of 2 (2:2-1)</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Popular patterns for flat structures with a floating length of 3 (3:3-1)</td>
<td>106</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>5.8</td>
<td>Sources of further information and advice</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>111</td>
</tr>
<tr>
<td>Part Two</td>
<td>Maypole braiding machines and mechanics</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>Braiding machine components</td>
<td>115</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>6.2</td>
<td>Carrier motion systems</td>
<td>115</td>
</tr>
<tr>
<td>6.3</td>
<td>Track plate</td>
<td>125</td>
</tr>
<tr>
<td>6.4</td>
<td>Braiding zone and the take-off</td>
<td>133</td>
</tr>
<tr>
<td>6.5</td>
<td>Additional elements in the braiding machine</td>
<td>141</td>
</tr>
<tr>
<td>6.6</td>
<td>Some special configurations</td>
<td>147</td>
</tr>
<tr>
<td>6.7</td>
<td>Sources of further information and advice</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>Carriers for braiding machines</td>
<td>153</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Carrier features</td>
<td>153</td>
</tr>
<tr>
<td>7.3</td>
<td>Yarn length compensation devices</td>
<td>156</td>
</tr>
<tr>
<td>7.4</td>
<td>Bobbin brakes and bobbin form</td>
<td>167</td>
</tr>
<tr>
<td>7.5</td>
<td>Yarn guides (eyelets, rollers, other elements)</td>
<td>169</td>
</tr>
<tr>
<td>7.6</td>
<td>Carrier modifications for special applications or materials</td>
<td>171</td>
</tr>
<tr>
<td>7.7</td>
<td>Sources of further information and advice</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>175</td>
</tr>
</tbody>
</table>
8 The mechanics of the braiding process
  8.1 Introduction 177
  8.2 Braiding point parameters 177
  8.3 Forces on the braid building yarn segment 185
  8.4 Relationship between take-off velocity and braiding angle 188
  8.5 Braid tension variances during tubular braiding and overbraiding 194
  8.6 Influence of the braiding needles over the braiding process of flat braids 197
  8.7 Bobbin winding tension and the braiding process 200
  8.8 Braiding tension influences over the braided product 204
  8.9 Control of the yarn tension in the braid former 207
  8.10 Sources of further information and advice 207
  References 208

9 Carrier mechanics in braiding operations
  9.1 Introduction 211
  9.2 Bobbin mass and yarn tension 211
  9.3 Unwinding angle and yarn tension 215
  9.4 Yarn velocity during length compensation 218
  9.5 Yarn tension fluctuations for spring-balanced carriers 221
  9.6 Maximum velocity of weight-balanced carriers 222
  9.7 Future trends 228
  References 229

10 Yarn winding operations in braiding
  10.1 Introduction 231
  10.2 Unwinding 231
  10.3 Control and regulation devices 237
  10.4 Winding 244
  10.5 Machines 248
  10.6 Winding calculations 250
  10.7 Sources of further information and advice 253
  References 254

Part Three  Specialist braided structures using maypole braiding technology

11 Spiral braiding
  11.1 Introduction 257
  11.2 Terminology 257
  11.3 Machine types for producing spiral braids 258
  11.4 Spiral braiding machines 262
  11.5 Equation of motion of the carriers 266
  11.6 Patterning basics for spiral braids 269
11.7 Colour patterning of spiral braids 272
11.8 Special properties and applications of spiral braids 277
11.9 Machines 278
11.10 Conclusions 279
11.11 Sources of further information and advice 282
   References 282

12 Square and other types of form braiding 283
12.1 Introduction 283
12.2 Terminology 283
12.3 Applications of square-braided gaskets 286
12.4 Patterning for two-track braids 289
12.5 Patterning for three-track braids 290
12.6 Patterning for four-track braids 297
12.7 A braiding machine with variable tracks 299
12.8 Form braids with more complex forms 302
12.9 Conclusions 311
   References 311

Part Four  Computer assisted design (CAD), other software and productivity calculations for braiding 313

13 Computer assisted design (CAD) software for the design of braided structures 315
13.1 Introduction 315
13.2 Colour design of braided structures 316
13.3 3D geometrical models 327
13.4 Custom machine configurator 331
13.5 Calculations for braiding 331
13.6 Summary 335
   References 336

14 Productivity calculations in braiding 337
14.1 Introduction 337
14.2 Required yarn length 337
14.3 Weight per metre 345
14.4 Time for preparation 347
14.5 Take-off speed, braiding time and productivity 348
14.6 Calculation examples 352
14.7 Sources of further information and advice 355
   References 356

15 Using MATLAB® for calculations in braiding 357
15.1 Introduction 357
15.2 MATLAB background 358