Intelligent Coatings for Corrosion Control

Edited by

Atul Tiwari, James Rawlins, Lloyd H. Hihara
Contents

Contributors xiii
Preface xvii

1 Electrochemical aspects of corrosion-control coatings 1
 L.H. Hihara
 1.1 Introduction 1
 1.2 Corrosion 2
 1.3 Coatings 7
 1.4 Conclusions 15
 References 15

2 The importance of corrosion and the necessity of applying intelligent coatings for its control 17
 I. Gurrappa, I.V.S. Yashwanth
 2.1 Introduction 17
 2.2 Low temperature intelligent coatings 20
 2.3 Encapsulation for self-healing coatings 22
 2.4 Cathodic protection 29
 2.5 High temperature intelligent coatings 30
 2.6 Hot corrosion 33
 2.7 Surface coating technologies 41
 2.8 Influence of major and trace elements 47
 2.9 Concept of intelligent coatings 48
 2.10 Conclusion and outlook 55
 References 56

3 Smart inorganic and organic pretreatment coatings for the inhibition of corrosion on metals/alloys 59
 Peter Zarras, John D. Stenger-Smith
 3.1 Introduction 59
 3.2 Designing smart coatings for corrosion protection 64
 3.3 Pretreatment coatings 64
 3.4 Nonmetallic-inorganic pretreatment coatings 66
9.9 Typical example of pilot scale trial and scale-up of acrylic latex for coating applications 358
9.10 Conclusion 360
References 361

10 Sol-gel route for the development of smart green conversion coatings for corrosion protection of metal alloys 363

Atul Tiwari, L.H. Hihara
10.1 Introduction 363
10.2 Development of smart chemistry 364
10.3 Characterization methodology 368
10.4 Evaluation of coating 382
10.5 Conclusion 404
Acknowledgment 405
References 405

11 Conducting polymers with superhydrophobic effects as anticorrosion coating 409

Al de Leon, Rigoberto C. Advincula
11.1 Introduction 409
11.2 Corrosion protection 410
11.3 Conducting polymer as an anticorrosion coating 411
11.4 Superhydrophobic coating as an anticorrosion coating 419
11.5 Superhydrophobic conducting polymers as anticorrosion coatings 424
11.6 Conclusion 427
Acknowledgments 428
References 428

12 Smart protection of polymer-inhibitor doped systems 431

Carmina Menchaca-Campos, Jorge Uruchurtu, Miguel Ángel Hernández-Gallegos, Alba Covelo, Miguel Ángel García-Sánchez
12.1 Introduction 431
12.2 Rebar concrete application 435
12.3 Electrospun smart coating 442
12.4 Sol-gel coatings for corrosion control 447
12.5 Conclusion 454
Acknowledgments 455
References 455
13 Properties and applications of thermochromic vanadium dioxide smart coatings
Mohammed Soltani, Anthony B. Kaye
13.1 Introduction and properties of VO₂ 461
13.2 Applications 471
13.3 Conclusion 484
References 484

14 One-part self-healing anticorrosive coatings: design strategy and examples
Jinglei Yang, Mingxing Huang
14.1 Introduction 491
14.2 Design strategies of one-part self-healing anticorrosive coatings 494
14.3 Examples of one-part self-healing anticorrosive coatings 503
14.4 Concluding remarks and perspectives 530
References 532

15 Intelligent stannate-based coatings of self-healing functionality for magnesium alloys
Abdel Salam Hamdy Makhlouf
15.1 Introduction 537
15.2 Types of magnesium alloys 538
15.3 Common forms of magnesium corrosion 538
15.4 Mitigation of magnesium corrosion using stannate conversion coatings 547
15.5 Conclusion and future remarks 553
Acknowledgments 554
References 554

16 Electroactive polymer-based anticorrosive coatings
Kung-Chin Chang, Jui-Ming Yeh
16.1 Introduction 557
16.2 Corrosion 558
16.3 Measures of corrosion prevention 559
16.4 Polymer coatings 562
16.5 Conclusions 580
References 581
17 Corrosion protective coatings for Ti and Ti alloys used for biomedical implants

Liana Maria Muresan

17.1 Introduction
17.2 Surface modification methods
17.3 Sol-gel method
17.4 Laser oxidation
17.5 Anodic oxidation
17.6 Plasma electrolytic oxidation
17.7 Electrolytic deposition
17.8 Combined methods
17.9 Protective films
17.10 Corrosion studies
17.11 Conclusions
References

18 Optical sensors for corrosion monitoring

18.1 Introduction
18.2 Optical fiber interrogation principles
18.3 Corrosion measurements
18.4 Conclusion and future trends
Acknowledgments
References

19 Characterization of high performance protective coatings for use on culturally significant works

Tami Lasseter Clare, Natasja A. Swartz

19.1 Introduction
19.2 Experimental details
19.3 Testing and characterizing the performance of chemically intelligent coatings
19.4 Characterizing physically intelligent coatings
19.5 Testing the performance of physically intelligent coatings
19.6 Conclusions and future directions
Acknowledgments
References
20 Monitoring corrosion using vibrational spectroscopic techniques

Shengxi Li

20.1 Introduction 673
20.2 Principles 674
20.3 Methods and equipment 677
20.4 Applications of in situ raman spectroscopy in corrosion science 680
20.5 Applications of in situ FTIR in corrosion science 690
20.6 Conclusion 694

Acknowledgments 694
References 694

Index 703