Contents

List of contributors ix
Woodhead Publishing Series in Electronic and Optical Materials xiii
Preface xiv

Part One Thermal surface treatments using lasers 1

1 Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon 3
L.A. Dobrzaniśki, T. Tański, A.D. Dobrzaniśka-Danikiewicz, E. Jonda, M. Bonek, A. Drygała
1.1 Introduction 3
1.2 Laser treatment of hot-work alloy tool steels 4
1.3 Laser treatment of light metal casting alloys 11
1.4 Texturization of polycrystalline silicon for the purpose of photovoltaics 15
1.5 Development trends of selected laser-treated engineering materials determined using new computer-integrated prediction methodology 21
1.6 Conclusion 27
1.7 Comments 30
References 30

2 Laser nitriding and carburization of materials 33
D. Höche, J. Kaspar, P. Schaaf
2.1 Introduction 33
2.2 Overview on surface alloying of materials by laser irradiation 34
2.3 Laser nitriding of titanium 37
2.4 Laser carburization of materials 44
2.5 Future trends 50
2.6 Sources of further information and advice 51
Acknowledgment 51
References 51

3 Mechanical properties improvement of metallic rolls by laser surface alloying 59
G. Sun, R. Zhou
3.1 Introduction 59
3.2 Mechanical properties improvement of metallic rolls by laser surface alloying: experimental procedures 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 Microstructures and phases</td>
<td>145</td>
</tr>
<tr>
<td>6.6 Analysis of crack growth paths</td>
<td>153</td>
</tr>
<tr>
<td>6.7 Microstructural evolutions</td>
<td>156</td>
</tr>
<tr>
<td>6.8 The microstructural refinement-cracking relationship</td>
<td>158</td>
</tr>
<tr>
<td>6.9 Conclusions</td>
<td>160</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>160</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td>7 New metallic materials development by laser additive manufacturing</td>
<td>163</td>
</tr>
<tr>
<td>Dongdong Gu</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>7.2 Selective laser melting of TiC/Ti nanocomposites parts with novel nanoscale reinforcement and enhanced wear performance</td>
<td>164</td>
</tr>
<tr>
<td>7.3 Development of porous stainless steel with controllable microcellular features using selective laser melting</td>
<td>172</td>
</tr>
<tr>
<td>7.4 Conclusion</td>
<td>177</td>
</tr>
<tr>
<td>7.5 Future trends</td>
<td>177</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>178</td>
</tr>
<tr>
<td>References</td>
<td>179</td>
</tr>
<tr>
<td>8 Innovations in laser cladding and direct laser metal deposition</td>
<td>181</td>
</tr>
<tr>
<td>C. Leyens, E. Beyer</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>181</td>
</tr>
<tr>
<td>8.2 Fundamentals of laser cladding and direct laser metal deposition</td>
<td>182</td>
</tr>
<tr>
<td>8.3 High precision 2D- and 3D-processing</td>
<td>185</td>
</tr>
<tr>
<td>8.4 High productivity processing</td>
<td>187</td>
</tr>
<tr>
<td>8.5 Process control</td>
<td>189</td>
</tr>
<tr>
<td>8.6 Conclusions and future trends</td>
<td>191</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>191</td>
</tr>
<tr>
<td>References</td>
<td>191</td>
</tr>
<tr>
<td>9 Laser-enhanced electroplating for generating micro/nanoparticles with continuous wave and pulsed Nd-YAG laser interactions</td>
<td>193</td>
</tr>
<tr>
<td>J. Lin, S.-H. Chen</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>193</td>
</tr>
<tr>
<td>9.2 Experimental setup</td>
<td>196</td>
</tr>
<tr>
<td>9.3 Results and discussion</td>
<td>200</td>
</tr>
<tr>
<td>9.4 Conclusions</td>
<td>210</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>210</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
<tr>
<td>10 Laser hybrid fabrication of tunable micro- and nano-scale surface structures and their functionalization</td>
<td>213</td>
</tr>
<tr>
<td>M. Zhong, T. Huang</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>213</td>
</tr>
<tr>
<td>10.2 Fabrication of nanoporous copper structures</td>
<td>215</td>
</tr>
<tr>
<td>10.3 Fabrication of 3D manganese-based nanoporous structure (3D-Mn-NPS)</td>
<td>220</td>
</tr>
</tbody>
</table>
10.4 Fabrication of micro-nano hierarchical Cu/Cu2O structure 223
10.5 Functionalization of tunable micro-nano surface structures 228
10.6 Conclusion 233
References 234

11 Laser-controlled intermetallics synthesis during surface cladding 237
I.V. Shishkovsky
11.1 Introduction 237
11.2 Laser control of self-propagated high-temperature synthesis (SHS) as synergism of the two high-tech processes 238
11.3 Overlapping of laser cladding and SHS processes for the fabrication of the functional graded (FG) iron, nickel, and titanium aluminides in the surface layers 248
11.4 Temperature distribution during the layerwise surface laser remelting of exothermal powder compositions 263
11.5 Theoretical and numerical modelling of selective laser sintering/melting (SLS/M) and SHS hybrid processes 268
11.6 Conclusion 278
Acknowledgment 282
References 282

12 Deposition and surface modification of thin solid structures by high-intensity pulsed laser irradiation 287
A.C. Popescu, M. Ulmeanu, C. Ristoscu, I.N. Mihaiescu
12.1 Introduction 287
12.2 Thin films with patterned surfaces obtained by laser deposition methods 288
12.3 Direct femtosecond laser surface processing in far- and near-field 303
12.4 Resources 307
12.5 Conclusions 308
Acknowledgments 309
References 309

Part Three Laser structuring and surface modification 315

13 Tailoring material properties induced by laser surface processing 317
13.1 Introduction 317
13.2 Laser texturing of silicon for improving surface functionalities 318
13.3 Femtosecond laser interactions with polymethyl methacrylate (PMMA) 333
13.4 Nd:YAG laser melting of magnesium alloy for corrosion resistance and surface wettability improvement 342
13.5 Conclusions 351
Acknowledgments 352
References 353

14 Femtosecond laser micromachining on optical fiber 359
D.N. Wang, Y. Wang, C.R. Liao
14.1 Introduction 359
14.2 Femtosecond laser micromachining of optical fibers 361
14.3 Optical fiber microstructures fabricated by femtosecond laser micromachining 363
14.4 Optical sensing devices based on optical fiber microstructures 367
14.5 Current and future trends 375
References 378

15 Spatiotemporal manipulation of ultrashort pulses for three-dimensional (3-D) laser processing in glass materials 383
F. He, J. Ni, B. Zeng, Y. Cheng, K. Sugioka
15.1 Introduction 383
15.2 Tailoring the focal spot by spatiotemporal manipulation of ultrashort laser pulses 385
15.3 Three-dimensional (3-D) istropic resolutions at low numerical apertures (NAs) using the combination of slit beam shaping and spatiotemporal focusing methods 389
15.4 Visualization of the spatiotemporally focused femtosecond laser beam using two-photon fluorescence excitation 393
15.5 Enhanced femosecond laser filamentation using spatiotemporally focused beams 397
15.6 Conclusion and future trends 400
Acknowledgment 400
References 400
Appendix: derivation of the angular chirp coefficient 403

16 Tribology optimization by laser surface texturing: from bulk materials to surface coatings 405
Q. Ding, L. Wang, L. Hu
16.1 Introduction 405
16.2 Laser ablation behaviors of different materials 405
16.3 Tribological application of laser surface texturing (LST) to bulk materials 411
16.4 Tribological application of LST to surface coatings 415
16.5 Conclusion and future trends 418
Acknowledgments 419
References 419
17 Fabrication of periodic submicrometer and micrometer arrays using laser interference-based methods
A.F. Lasagni, E. Beyer
17.1 Introduction
17.2 Multibeam interference patterns
17.3 Laser interference lithography
17.4 Direct laser interference patterning
17.5 Laser interference patterning systems
References

18 Ultrashort pulsed laser surface texturing
E. Toyserkani, N. Rasti
18.1 Introduction
18.2 Physics of thermal versus nonthermal ultrashort pulsed laser surface texturing
18.3 Nanosecond pulsed surface texturing
18.4 Picosecond pulsed surface texturing
18.5 Femtosecond pulsed laser surface texturing
18.6 Attosecond pulsed laser surface texturing: would it reasonably be applicable to surface modifications?
18.7 Conclusion
References

19 Laser-guided discharge surface texturing
Z.-T. Wang, M.-J. Yang
19.1 Introduction
19.2 Mechanisms of laser-guided discharge texturing (LGDT)
19.3 Experiments of LGDT
19.4 Comparison with Nd:YAG laser-textured surfacing (YAGLT) and electrical discharge surfacing (EDT)
19.5 Conclusions
References

20 Laser surface treatment to improve the surface corrosion properties of nickel-aluminum bronze
R. Cottam, M. Brandt
20.1 Introduction
20.2 Solid-state laser treatment and development of laser-processing parameters
20.3 Experimental procedure
20.4 Characterization of laser-processed microstructure
20.5 Corrosion performance
20.6 Conclusion
Acknowledgments
References
Part Four Chemical and biological applications of laser surface engineering

23 Luminescence spectroscopy as versatile probes for chemical diagnostics on the solid-liquid interface

N. Aoyagi, T. Saito

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>549</td>
</tr>
<tr>
<td>23.2 Chemical analysis of lanthanide and actinide ions by time-resolved laser-induced fluorescence spectroscopy (TRLFS)</td>
<td>551</td>
</tr>
<tr>
<td>23.3 Analysis of TRLFS data</td>
<td>553</td>
</tr>
<tr>
<td>23.4 Recent progress in chemical analysis of actinides by laser spectroscopy</td>
<td>554</td>
</tr>
<tr>
<td>23.5 Recent trends in chemical analysis of actinides by laser spectroscopy</td>
<td>559</td>
</tr>
<tr>
<td>23.6 Future trends in laser spectroscopy</td>
<td>562</td>
</tr>
<tr>
<td>References</td>
<td>562</td>
</tr>
</tbody>
</table>

24 Ablation effects of femtosecond laser functionalization on surfaces

B. Raillard, F. Mücklich

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>565</td>
</tr>
<tr>
<td>24.2 Laser techniques and materials</td>
<td>565</td>
</tr>
</tbody>
</table>
24.3 Topographical effects 566
24.4 Chemical and microstructural effects 572
24.5 Potential applications 576
24.6 Conclusions 579
References 579

25 Laser surface engineering in dentistry 583
R.S. Oliveira, J.T. Pereira, C.M. Assunção, S.B. Werle, J.A. Rodrigues
25.1 Introduction 583
25.2 Effect of lasers on soft tissues 584
25.3 Effect of lasers on hard tissues 590
25.4 Future trends 595
References 596

26 Laser-assisted fabrication of tissue engineering scaffolds from
titanium alloys 603
I.V. Shishkovsky
26.1 Introduction 603
26.2 Influence of the selective laser sintering (SLS)-technique-obtained
3-D porous matrix for tissue engineering on the culture of
multipotent mesenchymal stem cells 607
26.3 Preclinical testing of SLS-obtained titan and nitinol implants’
biocompatibility and biointegration 623
26.4 Finite-elemental optimization of SLS-obtained implants’ porous
structure 637
26.5 The SLS-assisted functional design of porous drug delivery
systems based on nitinol 644
26.6 Future remarks 647
Acknowledgments 649
References 649

27 Laser melting of NiTi and its effects on in vitro mesenchymal
stem cell responses 653
D.G. Waugh, J. Lawrence, C.W. Chan, I. Hussain, H.C. Man
27.1 Introduction 653
27.2 Experimental details 657
27.3 Results and discussion 660
27.4 Conclusions 672
References 673

Index 677