Building Probabilistic Graphical Models with Python

Solve machine learning problems using probabilistic graphical models implemented in Python with real-world applications

Kiran R Karkera
Table of Contents

Preface 1

Chapter 1: Probability 5

- The theory of probability 5
- Goals of probabilistic inference 8
- Conditional probability 9
- The chain rule 9
- The Bayes rule 9
- Interpretations of probability 11
- Random variables 13
- Marginal distribution 13
- Joint distribution 14
- Independence 14
- Conditional independence 15
- Types of queries 16
 - Probability queries 16
 - MAP queries 16
- Summary 18

Chapter 2: Directed Graphical Models 19

- Graph terminology 19
 - Python digression 20
- Independence and independent parameters 20
- The Bayes network 23
 - The chain rule 24
- Reasoning patterns 24
 - Causal reasoning 25
 - Evidential reasoning 27
 - Inter-causal reasoning 27
Table of Contents

D-separation 29
 The D-separation example 31
 Blocking and unblocking a V-structure 33
Factorization and I-maps 34
The Naive Bayes model 34
 The Naive Bayes example 36
Summary 37

Chapter 3: Undirected Graphical Models 39
 Pairwise Markov networks 39
 The Gibbs distribution 41
 An induced Markov network 43
 Factorization 43
 Flow of influence 44
 Active trail and separation 45
 Structured prediction 45
 Problem of correlated features 46
 The CRF representation 46
 The CRF example 47
 The factorization-independence tango 48
 Summary 49

Chapter 4: Structure Learning 51
 The structure learning landscape 52
 Constraint-based structure learning 52
 Part I 52
 Part II 53
 Part III 54
 Summary of constraint-based approaches 60
 Score-based learning 60
 The likelihood score 61
 The Bayesian information criterion score 62
 The Bayesian score 63
 Summary of score-based learning 68
 Summary 68

Chapter 5: Parameter Learning 69
 The likelihood function 71
 Parameter learning example using MLE 72
 MLE for Bayesian networks 74
 Bayesian parameter learning example using MLE 75
 Data fragmentation 77
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of data fragmentation on parameter estimation</td>
<td>77</td>
</tr>
<tr>
<td>Bayesian parameter estimation</td>
<td>79</td>
</tr>
<tr>
<td>An example of Bayesian methods for parameter learning</td>
<td>80</td>
</tr>
<tr>
<td>Bayesian estimation for the Bayesian network</td>
<td>85</td>
</tr>
<tr>
<td>Example of Bayesian estimation</td>
<td>85</td>
</tr>
<tr>
<td>Summary</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 6: Exact Inference Using Graphical Models</td>
<td>93</td>
</tr>
<tr>
<td>Complexity of inference</td>
<td>93</td>
</tr>
<tr>
<td>Real-world issues</td>
<td>94</td>
</tr>
<tr>
<td>Using the Variable Elimination algorithm</td>
<td>94</td>
</tr>
<tr>
<td>Marginalizing factors that are not relevant</td>
<td>97</td>
</tr>
<tr>
<td>Factor reduction to filter evidence</td>
<td>98</td>
</tr>
<tr>
<td>Shortcomings of the brute-force approach</td>
<td>100</td>
</tr>
<tr>
<td>Using the Variable Elimination approach</td>
<td>100</td>
</tr>
<tr>
<td>Complexity of Variable Elimination</td>
<td>106</td>
</tr>
<tr>
<td>Graph perspective</td>
<td>107</td>
</tr>
<tr>
<td>Learning the induced width from the graph structure</td>
<td>109</td>
</tr>
<tr>
<td>The tree algorithm</td>
<td>110</td>
</tr>
<tr>
<td>The four stages of the junction tree algorithm</td>
<td>111</td>
</tr>
<tr>
<td>Using the junction tree algorithm for inference</td>
<td>112</td>
</tr>
<tr>
<td>Stage 1.1 – moralization</td>
<td>113</td>
</tr>
<tr>
<td>Stage 1.2 – triangulation</td>
<td>114</td>
</tr>
<tr>
<td>Stage 1.3 – building the join tree</td>
<td>114</td>
</tr>
<tr>
<td>Stage 2 – initializing potentials</td>
<td>115</td>
</tr>
<tr>
<td>Stage 3 – message passing</td>
<td>115</td>
</tr>
<tr>
<td>Summary</td>
<td>119</td>
</tr>
<tr>
<td>Chapter 7: Approximate Inference Methods</td>
<td>121</td>
</tr>
<tr>
<td>The optimization perspective</td>
<td>121</td>
</tr>
<tr>
<td>Belief propagation in general graphs</td>
<td>122</td>
</tr>
<tr>
<td>Creating a cluster graph to run LBP</td>
<td>123</td>
</tr>
<tr>
<td>Message passing in LBP</td>
<td>124</td>
</tr>
<tr>
<td>Steps in the LBP algorithm</td>
<td>125</td>
</tr>
<tr>
<td>Improving the convergence of LBP</td>
<td>126</td>
</tr>
<tr>
<td>Applying LBP to segment an image</td>
<td>126</td>
</tr>
<tr>
<td>Understanding energy-based models</td>
<td>128</td>
</tr>
<tr>
<td>Visualizing unary and pairwise factors on a 3 x 3 grid</td>
<td>129</td>
</tr>
<tr>
<td>Creating a model for image segmentation</td>
<td>130</td>
</tr>
<tr>
<td>Applications of LBP</td>
<td>135</td>
</tr>
<tr>
<td>Sampling-based methods</td>
<td>136</td>
</tr>
<tr>
<td>Forward sampling</td>
<td>136</td>
</tr>
<tr>
<td>The accept-reject sampling method</td>
<td>137</td>
</tr>
</tbody>
</table>