Marvin Jens

Dissecting Regulatory Interactions of RNA and Protein

Combining Computation and High-throughput Experiments in Systems Biology

Doctoral Thesis accepted by Humboldt University of Berlin, Germany

Springer
Contents

1 Introduction ... 1
 1.1 Biological Sequences: Living Information 1
 1.2 The Special Case of RNA 2
 1.3 Post-transcriptional Regulation 3
 1.3.1 The Life of mRNA 3
 1.3.2 Untranslated Regions as Regulatory Hot Spots 7
 1.4 The Transcriptome Is a Complex Regulatory Substrate . 8
 1.4.1 A Note on Specificity 9
 1.4.2 Sequence Composition of Transcribed RNAs 10
 1.5 RNA Regulators ... 11
 1.5.1 RNA-Binding Proteins 11
 1.5.2 MicroRNAs 12
 1.5.3 RNA Competition and Target Site “Decoys” 13
 1.5.4 Circular RNA 14
 1.6 Transcription of RNA as a “Decompression” of Genetic Information 14

References .. 15

2 Computational Analysis of PAR-CLIP Data 21
 2.1 About CLIP .. 21
 2.2 Computational Pipelines for PAR-CLIP Analysis 22
 2.3 The Rajewsky Lab Pipeline 23
 2.3.1 CLIP Read Pre-processing 24
 2.3.2 Alignment to the Reference Sequence 25
 2.3.3 Clustering of Aligned Reads 25
 2.3.4 Consensus Rules 25
 2.3.5 Annotation and Quality Scoring of Clusters 25
 2.3.6 False Discovery Rate Estimation 26
 2.3.7 Adaptive Cluster Filtering 27
 2.3.8 Possible Improvements 29