Contents

ix Conference Committee

SESSION 1 PHENOMENOLOGY AND TECHNOLOGY

9077 02 FPGA architectures for electronically scanned wide-band RF beams using 3D FIR/IIR digital filters for rectangular array aperture receivers [9077-1]
S. Wijayaratna, A. Madanayake, B. D. Beall, Univ. of Akron (United States); L. T. Bruton, Univ. of Calgary (Canada)

9077 03 Automated cancellation of harmonics using feed-forward filter reflection for radar transmitter linearization [9077-2]
K. A. Gallagher, The Pennsylvania State Univ. (United States); G. J. Mazzaro, The Citadel (United States); R. M. Narayanan, The Pennsylvania State Univ. (United States); K. D. Sherbondy, A. F. Martone, U.S. Army Research Lab. (United States)

9077 04 Characterization of carbon fiber composite materials for RF applications [9077-3]
E. J. Riley, E. H. Lenzing, R. M. Narayanan, The Pennsylvania State Univ. (United States)

9077 05 Tapered slot antenna design for vehicular GPR applications [9077-4]
E. Bicak, TUBITAK BILGEM (Turkey); K. Yeğin, TUBITAK BILGEM (Turkey) and Yeditepe Univ. (Turkey); H. Nazlı, M. Dağ, TUBITAK BILGEM (Turkey)

SESSION 2 PROGRAMS AND SYSTEMS

9077 06 Multi-mission autonomous synthetic aperture radar [9077-5]
T. J. Walls, M. L. Wilson, U.S. Naval Research Lab. (United States); D. Madsen, M. Jensen, S. Sullivan, Space Dynamics Lab. (United States); M. Addario, I. Hally, SRC Inc. (United States)

9077 07 Compressive wideband microwave radar holography [9077-7]
S. A. Wilson, R. M. Narayanan, The Pennsylvania State Univ. (United States)

9077 08 Design and performance of an ultra-wideband stepped-frequency radar with precise frequency control for landmine and IED detection [9077-8]
B. R. Phelan, The Pennsylvania State Univ. (United States); K. D. Sherbondy, K. I. Ranney, U.S. Army Research Lab. (United States); R. M. Narayanan, The Pennsylvania State Univ. (United States)

SESSION 3 ALGORITHMS AND PROCESSING I

9077 09 Arbitrary scene simulation for synthetic aperture radar [9077-10]
C. Musgrove, R. Naething, J. Schilling, Sandia National Labs. (United States)
<table>
<thead>
<tr>
<th>Session 4</th>
<th>Algorithms and Processing II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9077 0A</td>
<td>Improving target position and velocity estimation for air-to-air radar [9077-11]</td>
</tr>
<tr>
<td></td>
<td>G. Liu, N. Askar, General Atomics Aeronautical Systems, Inc. (United States)</td>
</tr>
<tr>
<td>9077 0B</td>
<td>Identification of maritime target objects from high resolution TerraSAR-X data using SAR simulation [9077-12]</td>
</tr>
<tr>
<td></td>
<td>H. Anglberger, T. Kempf, M. Hager, R. Speck, H. Suess, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)</td>
</tr>
<tr>
<td>9077 0C</td>
<td>A complete ensemble empirical mode decomposition for GPR signal time-frequency analysis [9077-13]</td>
</tr>
<tr>
<td></td>
<td>J. Li, Delaware State Univ. (United States) and Jilin Univ. (China); L. Chen, Jilin Univ. (China); S. Xia, P. Xu, F. Liu, Delaware State Univ. (United States)</td>
</tr>
<tr>
<td>9077 0D</td>
<td>Spectrum sensing techniques for nonlinear radar [9077-66]</td>
</tr>
<tr>
<td></td>
<td>A. Martone, K. Ranney, U.S. Army Research Lab. (United States); G. Mazzaro, The Citadel (United States); D. McNamara, J. Silvious, K. Sherbondy, U.S. Army Research Lab. (United States); K. Gallagher, R. Narayanan, The Pennsylvania State Univ. (United States)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 5</th>
<th>Noise and Low-Probability of Intercept Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>9077 0E</td>
<td>Radar signatures of indoor clutter for through-the-wall radar applications [9077-15]</td>
</tr>
<tr>
<td></td>
<td>T. D. Butler, R. M. Narayanan, The Pennsylvania State Univ. (United States); T. Dogaru, U.S. Army Research Lab. (United States)</td>
</tr>
<tr>
<td>9077 0F</td>
<td>Textural feature selection for enhanced detection of stationary humans in through-the-wall radar imagery [9077-16]</td>
</tr>
<tr>
<td></td>
<td>A. Chaddad, F. Ahmad, M. G. Amin, Villanova Univ. (United States); P. Sévigny, D. DiFilippo, Defence Research and Development Canada (Canada)</td>
</tr>
<tr>
<td>9077 0G</td>
<td>High-order approximation compact schemes for forward subsurface scattering problems [9077-17]</td>
</tr>
<tr>
<td></td>
<td>Y. A. Gryazin, Idaho State Univ. (United States)</td>
</tr>
<tr>
<td>9077 0H</td>
<td>GNSS-based passive airborne radar: hybrid-aperture sensing and airborne test plans [9077-18]</td>
</tr>
<tr>
<td></td>
<td>R. Silver, H. Suarez, Y. Zhang, Y.-R. Huang, M. Tyler, Univ. of Oklahoma (United States)</td>
</tr>
<tr>
<td>9077 0I</td>
<td>An optimized universal hardware-based adaptive correlation receiver architecture [9077-19]</td>
</tr>
<tr>
<td></td>
<td>Z. Zhu, H. Suarez, Y. Zhang, S. Wang, The Univ. of Oklahoma (United States)</td>
</tr>
<tr>
<td>9077 0J</td>
<td>Ultra-wideband noise radar imaging of cylindrical PEC objects using diffraction tomography [9077-20]</td>
</tr>
<tr>
<td></td>
<td>H. J. Shin, R. M. Narayanan, The Pennsylvania State Univ. (United States); M. Rangaswamy, Air Force Research Lab. (United States)</td>
</tr>
</tbody>
</table>
SAR image quality using advanced pulse compression noise (APCN) [9077-21]
M. A. Govoni, R. A. Elwell, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)

Super-resolution processing for multi-functional LPI waveforms [9077-23]
Z. Li, Y. Zhang, S. Wang, J. Cai, The Univ. of Oklahoma (United States)

SESSION 6 MULTIPLE APERTURES AND MIMO

A combined STAP/DPCA algorithm for enhanced endocllutter target detection [9077-24]
T. Medl, General Atomics Aeronautical Systems, Inc. (United States)

Image reconstruction and compressive sensing in MIMO radar [9077-26]
B. Sun, BeiHang Univ. (China); J. Lopez, Univ. of Houston (United States); Z. Qiao, The Univ. of Texas-Pan American (United States)

Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations: rail-SAR [9077-28]

SESSION 7 APPLICATIONS AND EXPLOITATION

Superpixel segmentation using multiple SAR image products [9077-29]
M. M. Moya, M. W. Koch, D. N. Perkins, R. D. West, Sandia National Labs. (United States)

Detection and tracking of personnel using a high-speed 94GHz surveillance radar [9077-30]
D. G. Macfarlane, D. A. Robertson, Univ. of St. Andrews (United Kingdom); B. Jones, A. Clark, Ctr. for Applied Science and Technology (United Kingdom)

Design considerations for quantum radar implementation [9077-31]
M. J. Brandsema, R. M. Narayanan, The Pennsylvania State Univ. (United States); M. Lanzagorta, U.S. Naval Research Lab. (United States)

Stepped-frequency nonlinear radar simulation [9077-32]
G. J. Mazzaro, The Citadel (United States); K. A. Gallagher, The Pennsylvania State Univ. (United States); A. F. Martone, U.S. Army Research Lab. (United States); R. M. Narayanan, The Pennsylvania State Univ. (United States)

Determining snow depth using Ku-band interferometric synthetic aperture radar (InSAR) [9077-25]
J. R. Evans, F. A. Kruse, Naval Postgraduate School (United States); D. L. Bickel, Sandia National Labs. (United States); R. Dunkel, General Atomics Aeronautical Systems, Inc. (United States)
SESSION 8 MEDICAL APPLICATION OF RADAR

9077 0W Medical radar considerations for detecting and monitoring Crohn’s disease [9077-33]
S. Smith, R. M. Narayanan, E. Messaris, The Pennsylvania State Univ. (United States)

9077 0X Development of a wearable microwave bladder monitor for the management and
treatment of urinary incontinence [9077-34]
F. Krewer, F. Morgan, E. Jones, M. Glavin, M. O’Halloran, National Univ. of Ireland, Galway
(Ireland)

9077 0Y Development of anatomically and dielectrically accurate breast phantoms for microwave
imaging applications [9077-35]
M. O’Halloran, S. Lohfeld, National Univ. of Ireland, Galway (Ireland); G. Ruvio, J. Browne,
Dublin Institute of Technology (Ireland); F. Krewer, National Univ. of Ireland, Galway
(Ireland); C. O. Ribeiro, V. C. Inacio Pita, R. C. Conceicao, Univ. de Lisboa (Portugal);
E. Jones, M. Glavin, National Univ. of Ireland, Galway (Ireland)

9077 0Z Estimation of respiratory rhythm during night sleep using a bio-radar [9077-36]
A. Tataradze, L. Anishchenko, M. Alekhin, Bauman Moscow State Technical Univ. (Russian
Federation); L. Korostovtseva, Y. Sviryaev, Federal Almazov Medical Research Ctr. (Russian
Federation)

9077 10 Simulation of holographic radar application in detection of breast tumors [9077-37]
I. L. Alborova, L. N. Anishchenko, Bauman Moscow State Technical Univ. (Russian
Federation)

9077 11 Comparison between UWB and CW radar sensors for breath activity monitoring [9077-38]
S. Pisa, P. Bernardi, R. Cicchetti, R. Giusto, E. Pittella, E. Piuzzi, O. Testa, Univ. degli Studi di
Roma La Sapienza (Italy)

9077 12 Fall detection and classifications based on time-scale radar signal characteristics
[9077-39]
A. Gadde, M. G. Amin, Y. D. Zhang, F. Ahmad, Villanova Univ. (United States)

SESSION 9 RADAR MICRO-DOPPLER SIGNATURES I: JOINT SESSION WITH CONFERENCES 9077 AND 9082

9077 13 Performance bounds on micro-Doppler estimation and adaptive waveform design using
OFDM signals [9077-40]
S. Sen, J. Barhen, C. W. Glover, Oak Ridge National Lab. (United States)

9077 14 Characterization of micro-Doppler radar signature of commercial wind turbines [9077-41]
F. Kong, Y. Zhang, R. Palmer, The Univ. of Oklahoma (United States) and Advanced Radar
Research Ctr. (United States)

9077 15 Micro-Doppler classification of riders and riderless horses [9077-42]
D. Tahmoush, U.S. Army Research Lab. (United States)

9077 16 Effect of wind turbine micro-Doppler on SAR and GMTI signatures [9077-43]
R. Bhalla, Leidos, Inc. (United States); H. Ling, The Univ. of Texas at Austin (United States)
Detection of small UAV helicopters using micro-Doppler [9077-44]
D. Tahmoush, U.S. Army Research Lab. (United States)

Software-defined radar and waveforms for studying micro-Doppler signatures [9077-45]
B. Liu, R. Chen, Ancortek Inc. (United States)

Very low-phase noise, coherent 94GHz radar for micro-Doppler and vibrometry studies [9077-46]
D. A. Robertson, Univ. of St. Andrews (United Kingdom); G. M. Brooker, The Univ. of Sydney (Australia); P. D. L. Beasley, QinetiQ Ltd. (United Kingdom)

Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems [9077-47]
B. Rodriguez-Hervas, M. Maile, B. C. Flores, The Univ. of Texas at El Paso (United States) and Mercedes-Benz Research & Development North America, Inc. (United States)

Stationary and moving target shadow characteristics in synthetic aperture radar [9077-48]
A. M. Raynal, D. L. Bickel, A. W. Doerry, Sandia National Labs. (United States)

Extremely high-frequency micro-Doppler measurements of humans [9077-49]
A. S. Hedden, J. L. Silvious, C. R. Dietlein, U.S. Army Research Lab. (United States); J. A. Green, U.S. Army Research Lab. (United States) and Univ. of Maryland (United States); D. A. Wikner, U.S. Army Research Lab. (United States)

SAR moving target imaging using sparse and low-rank decomposition [9077-50]
K.-Y. Ni, S. Rao, HRL Labs., LLC (United States)

Lidar compressive sensing using chaotic waveform [9077-51]
B. Verdin, R. von Borries, The Univ. of Texas at El Paso (United States)

Off-grid compressive sensing through-the-wall radar imaging [9077-52]
S. Xia, F. Liu, Delaware State Univ. (United States)

Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank [9077-53]
A. Sengupta, A. Madanayake, The Univ. of Akron (United States); R. Gómez-García, Univ. de Alcalá (Spain); E. D. Engeberg, The Univ. of Akron (United States)

Signal processing techniques for stepped frequency ultra-wideband radar [9077-54]
L. Nguyen, U.S. Army Research Lab. (United States)
POSTER SESSION

9077 1I Some comments on performance requirements for DMTI radar [9077-55]
A. W. Doerry, D. L. Bickel, A. M. Raynal, Sandia National Labs. (United States)

9077 1J Backprojection for GMTI processing [9077-56]
A. W. Doerry, Sandia National Labs. (United States)

9077 1K Correcting radar range measurements for atmospheric propagation effects [9077-57]
A. W. Doerry, Sandia National Labs. (United States)

9077 1L Digital synthesis of linear-FM chirp waveforms: comments on performance and enhancements [9077-58]
A. W. Doerry, Sandia National Labs. (United States); J. M. Andrews, S. M. Buskirk, General Atomics Aeronautical Systems, Inc. (United States)

9077 1M A novel approach in automatic estimation of rats' loco-motor activity [9077-59]
L. N. Anishchenko, S. I. Ivashov, I. A. Vasiliev, Bauman Moscow State Technical Univ. (Russian Federation)

9077 1N Application of step-frequency radars in medicine [9077-60]
L. Anishchenko, M. Alekhin, A. Tataraidze, S. Ivashov, A. Bugaev, Bauman Moscow State Technical Univ. (Russian Federation); F. Soldovieri, Istituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR (Italy)

9077 1O Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats [9077-61]
S. Brovoll, T. Berger, Ø. Aardal, Norwegian Defence Research Establishment (Norway); T. Lande, Univ. of Oslo (Norway); S.-E. Hamran, Norwegian Defence Research Establishment (Norway) and Univ. of Oslo (Norway)

9077 1Q Radar measurements of moving objects around corners in a realistic scene [9077-63]

9077 1S Power line characterization from an airborne data collection with a millimeter wave radar [9077-65]
D. S. Goshi, L. Q. Bui, Honeywell International Inc. (United States)

9077 1T Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector [9077-68]
M. Khanna, E. Kapoor, The Sinus Institute of Northern Virginia (United States)

Author Index