Fundamentals of Solid-State Lighting

LEDs, OLEDs, and Their Applications in Illumination and Displays

VINOD KUMAR KHANNA

 CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the Taylor & Francis Group, an Informa business
Contents

Preface xxv
Acknowledgments xxxi
Author xxxiii
Acronyms,Abbreviations, and Initialisms xxxv

PART I History and Basics of Lighting

Chapter 1 Chronological History of Lighting 3

Learning Objectives 3
1.1 How Early Man Looked at the “Sun” 3
1.2 The Need for Artificial Light Sources 3
1.3 First Steps in the Evolution of Artificial Lighting 4
1.4 The First Solid-State Lighting Device 4
1.5 The First Practical Electrical Lighting Device 4
1.6 The Incandescent Filament Lamp 6
1.7 Mercury and Sodium Vapor Lamps 7
1.8 The Fluorescent Lamp 7
1.9 The Compact Fluorescent Lamp 8
1.10 Revolution in the World of Lighting: Advent of Light-Emitting Diodes 8
1.11 Birth of the First LED and the Initial Stages of LED Development 8
1.12 The Father of the LED: Holonyak Jr. 11
1.13 The Post-1962 Developments 11
1.14 Haitz’s Law 11
1.15 AlGaAs LEDs Grown on GaAs Substrates 12
1.16 AlGaInP LEDs on GaAs Substrates 12
1.17 Acquisition of Generated Light 12
1.18 The AlInGaN Material System: Blue and White LEDs 13
1.19 High-Power LEDs 13
1.20 LEDs and Materials Science 14
1.21 The Omnipresent Elements: Ga, N, and As 14
1.22 Further Refinements 15
1.23 Discussion and Conclusions 15
References 16
Review Exercises 17

Chapter 2 Nature and Quality of Lighting 19

Learning Objectives 19
2.1 What Is Light? 19
Chapter 3 Conventional Light Sources

Learning Objectives

3.1 Competing Light Sources
3.2 Incandescent Filament Bulb
3.3 Tungsten Halogen Lamp
3.4 High-Pressure Mercury Vapor Lamp
3.5 Metal Halide Lamp
3.6 Low-Pressure Sodium and High-Pressure Sodium Vapor Lamps
3.7 Fluorescent Tube and Compact Fluorescent Lamp
3.8 Performance Comparison of Different Traditional Light Sources
3.9 Discussion and Conclusions
References
Review Exercises

Chapter 4 LED-Based Solid-State Lighting

Learning Objectives

4.1 LED Diode Family
4.2 LED Construction
4.3 Quasi-Monochromatic Nature of Emission
4.4 Red LED
4.5 White LED
4.6 Indicator- and Illuminator-Type LEDs
4.7 Preliminary Ideas of SSL
4.7.1 The Term "Solid-State Lighting"
4.7.2 Meaning of Illumination
4.7.3 A Display Device
4.8 Why Solid-State Lighting?
4.9 Drawbacks of SSL
PART II Inorganic LEDs

Chapter 5 Physical Principles of Inorganic LEDs

Learning Objectives

5.1 Understanding Lighting Processes from Luminescence Theory
5.2 Injection Luminescence: The Most Efficient Electroluminescence
5.3 Mechanisms of Electron and Hole Recombination in Semiconductors
 5.3.1 Radiative Recombination Mechanisms
 5.3.2 Nonradiative Recombination Mechanisms
5.4 Recombination Rates of Excess Carriers and Excess-Carrier Lifetimes
 5.4.1 Radiative Recombination Rate (U_{rad}) and Carrier Lifetime (τ_r)
 5.4.2 Nonradiative Recombination Rate (R_{ni}) and Carrier Lifetime (τ_{ni})
 5.4.3 Overall Lifetime of Excess Carriers and Radiative Efficiency of LED
5.5 Discussion and Conclusions

References
Review Exercises

Chapter 6 Homojunction LEDs

Learning Objectives

6.1 Homojunction in Equilibrium
6.2 Reverse-Biased Homojunction
6.3 Forward-Biased Homojunction
6.4 Injection Efficiency of Homojunction LEDs
6.5 Discussion and Conclusions

References
Review Exercises
9.2.2 Pyramidal Reflectors 155
9.2.3 Distributed Bragg Reflectors 156
9.2.4 Resonant Cavity LEDs 156
9.2.5 Crown-Shaped Patterned Sapphire Substrates 157
9.2.6 Roughened and Textured Surfaces 157
9.2.7 Surface-Plasmon LED 158
9.2.8 Preventing Absorption Losses 159
9.2.9 Photon Reincarnation and Recycling 159
9.3 Extraction Efficiency Formula for a Single-Escape Cone LED 160
 9.3.1 Fractional Solid Angle Factor 160
 9.3.2 Semiconductor–Epoxy Transmittance \(T_{SE} \) Factor 160
 9.3.3 Epoxy–Air Transmittance \(T_{EA} \) Factor 164
 9.3.4 Combination of the Extraction Efficiency Factors and Assumptions 164
 9.3.5 Generalization to an \(N \) Escape Cone-LED Structure 164
 9.3.6 Escape Cone Engineering in Planar, Rectangular LEDs 165
9.4 Efficiency Enhancement by Making Nonplanar, Nonrectangular LEDs 169
9.5 Discussion and Conclusions 170
References 172
Review Exercises 173

Chapter 10 Semiconductor Materials for Inorganic LEDs 175
Learning Objectives 175
10.1 Material Requirements for LED Fabrication 175
10.2 Common LED Materials 177
 10.2.1 AlGaAs Materials 177
 10.2.2 AlGaInP Materials 182
 10.2.3 AlInGaN Materials 184
10.3 Discussion and Conclusions 187
References 188
Review Exercises 189

Chapter 11 Fabrication of Inorganic LEDs 191
Learning Objectives 191
11.1 Heterostructure Growth Methods: LPE and MOCVD 191
 11.1.1 Liquid-Phase Epitaxy 192
 11.1.2 Metal Organic Chemical Vapor Deposition 193
11.2 LED Substrates 194
11.3 GaN Diode Processing Steps 196
 11.3.1 GaN Growth Using GaN Buffer Layer 196
 11.3.2 N-Type Doping of GaN 197
Chapter 14 Thermal Management of LEDs

Learning Objectives

14.1 Short-Term Effects of Temperature on LED Performance

14.1.1 Effect of Temperature on Electrical Behavior of LED

14.1.2 Effect of Temperature on Optical Characteristics of LED

14.2 LED Lifetime Concept

14.3 Long-Term Influence of Temperature on Different Parts of the LED

14.3.1 White LED Die

14.3.2 Phosphor

14.3.3 Encapsulant

14.3.4 Package

14.4 Effect of Thermal Cycling on LED Performance

14.5 Correlation of LED Lifetime with Thermally Related Parameters

14.5.1 Temperature Rating and LED Lifetime

14.5.2 Pulsed Current Flow and LED Lifetime

14.5.3 Thermal Analysis of LEDs

14.5.4 Electrical and Thermal Analogies

14.5.5 Series and Parallel Combinations of Thermal Resistors

14.5.6 Thermal Paths to the Ambient and Mechanisms of Heat Removal through Air

14.6 Maximizing Heat Loss from LED

14.6.1 Conduction Enhancement

14.6.2 Convection Enhancement

14.6.3 Radiation Enhancement

14.6.4 Heat Removal from LED Driving Circuitry

14.7 Discussion and Conclusions

References

Review Exercises
Contents

17.3 Number of Converters Required for Low- and High-Brightness LEDs 297
17.4 Lateral Structures of High-Brightness LEDs 297
17.5 Vertical Architecture of High-Brightness LEDs 300
17.6 Laser Lift-Off Process for Sapphire Substrate Removal 302
17.7 Heat Removal and Protection against Failure Modes 304
17.8 Colors of High-Brightness LEDs 305
17.9 Photonic Crystal LEDs 305
17.10 Encapsulant Materials for High-Brightness LEDs 307
17.11 Applications of High-Brightness LEDs 307
 17.11.1 Pocket Projectors 307
 17.11.2 Backlighting 308
 17.11.3 Flashlights 308
 17.11.4 General Illumination 308
 17.11.5 Automotive Headlamps and Signal Lamps 309
17.12 Discussion and Conclusions 309
References 310
Review Exercises 310

PART III Organic LEDs

Chapter 18 Organic Semiconductors and Small-Molecule LEDs 315

Learning Objectives 315
18.1 Organic Materials and Semiconductors 315
 18.1.1 Organic Semiconductors: A Subset of Organic Materials 315
 18.1.2 Saturated and Unsaturated Organic Materials 316
 18.1.3 Special Characteristics of Organic Semiconductors 316
18.2 Electroluminescent Materials for OLEDs 319
 18.2.1 Fluorescent and Phosphorescent Molecules 319
 18.2.2 Singlet and Triplet Excitons 319
 18.2.3 Singlet Emitters 319
 18.2.4 Triplet Emitters 319
 18.2.5 Efficiencies from Triplet and Singlet Molecules 320
18.3 Types of Organic Semiconductors 320
 18.3.1 Small Molecules and Polymers 320
 18.3.2 Bandgaps of Small Molecules and Polymers 321
18.4 Early Organic Optoelectronic Materials and the First Organic LED 321
 18.4.1 Renewal of Interest in Anthracene 321
 18.4.2 Small-Organic-Molecule LED 322
 18.4.3 Roles of Constituent Layers 322
 18.4.4 Operating Mechanism of Small-Molecule LED and Multifunctionality of Layers 324
Chapter 19 Polymer LEDs

Learning Objectives

19.1 Moving to Polymers
19.2 Polymer LED Operation
19.3 Internal Quantum Efficiency of Polymer LED
 19.3.1 Matching the Number of Holes and Electrons Reaching the Polymer Layer
 19.3.2 Using Several Polymer Layers
 19.3.3 Polymer Doping
 19.3.4 External Quantum Efficiency of Polymer LED
19.4 Energy Band Diagrams of Different Polymer LED Structures
 19.4.1 ITO/Polymer (MEH-PPV)/Ca LED
 19.4.2 ITO/Polymer (MEH-PPV)/Al LED
 19.4.3 ITO/(MEH-PPV + CN-PPV)/Al LED
 19.4.4 ITO/(PEDOT:PSS + MEH-PPV)/Ca LED
19.5 Fabrication of Polymer LED
19.6 Differences between Small-Molecule and Polymer LEDs
19.7 Organic LEDs, Inorganic LEDs, and LCDs
19.8 Discussion and Conclusions
References
Review Exercises

Chapter 20 White Organic LEDs

Learning Objectives

20.1 Obtaining White Electroluminescence
 20.1.1 Necessary Conditions
 20.1.2 Foundation Approaches
20.2 Single Emitter-Based WOLED Schemes
 20.2.1 Solitary Molecular Emitters Forming Excimers/Exciplexes or Electromers
 20.2.1.1 Excimers and Exciplexes
 20.2.1.2 Electromers
 20.2.1.3 Red Shift in Excimer and Electrometer Emission Wavelengths
 20.2.1.4 WOLED Examples Using Excimers
 20.2.1.5 WOLED Example Using Electrometer
 20.2.1.6 Advantages and Disadvantages
20.2.2 Single Polymers or Molecules Emitting Several Colors 348
 20.2.2.1 Convenience and Drawbacks of the Single Polymer Approach 348
 20.2.2.2 Examples of WOLEDs 348
20.2.3 Single Color-Emitting OLED with a Down-Conversion Layer 349
 20.2.3.1 Blue + Orange Mixing 349
 20.2.3.2 Using UV Source 350
20.3 Multiple Emitter-Based WOLEDs 350
 20.3.1 Single Stack: Multiple Emitters Blended in a Single Layer 350
 20.3.1.1 For-and-Against Qualities 350
 20.3.1.2 Mixing Polymers with Two Complementary or Three Fundamental Colors 351
 20.3.1.3 Doping Small Proportions of One or More Molecular Emitters in a Wide Bandgap Host 351
 20.3.2 Stacked Layers Emitting Different Colors 351
 20.3.2.1 Optimizing the Roles of Layers 351
 20.3.2.2 Vertical Red–Green–Blue Stack 351
 20.3.2.3 Horizontal RGB Stack 352
20.4 Discussion and Conclusions 352
References 353
Review Exercises 354

PART IV LED Driving Circuits

Chapter 21 DC Driving Circuits for LEDs 359

Learning Objectives 359
21.1 Features of DC Sources 359
21.2 Cell and Battery 359
21.3 Battery and Capacitor 363
21.4 Linear Transistor Regulator 364
21.5 Switch-Mode Power Supply 365
21.6 Buck Converter 366
21.7 Boost Converter 370
21.8 Buck–Boost Converter 372
21.9 LED Dimming 373
21.10 Lifetime of the Driving Circuit 374
21.11 Series and Parallel Strings of LEDs 374
 21.11.1 Series Connection 374
 21.11.2 Parallel Connection 375
Chapter 22 AC Driving Circuits for LEDs 381

Learning Objectives 381
22.1 AC Mains Line 381
22.2 Rectification 382
22.3 Digital Methods of LED Driving 384
22.4 Analog Methods of LED Driving 385
22.5 Power Quality of AC-Driven LED Lighting 386
 22.5.1 Power Factor of LED Circuits 386
 22.5.2 Total Harmonic Distortion in LED Circuits 388
 22.5.3 Resistor-Type and Buck Convertor
 LED Circuits 390
22.6 AC LEDs 390
22.7 Applications Requiring DC or AC LEDs 391
22.8 Capacitive Current Control LEDs 392
22.9 Discussion and Conclusions 393
References 394
Review Exercises 395

PART V Applications of LEDs 399

Chapter 23 LEDs in General Illumination 399

Learning Objectives 399
23.1 LED-Based Illumination 399
 23.1.1 Local or Specialty Lighting 400
 23.1.2 General Lighting 400
23.2 Retrofit LED Lamps 401
23.3 LED Bulbs 402
 23.3.1 Low-Wattage LED Bulbs 402
 23.3.2 Medium-Wattage LED Bulbs 402
 23.3.3 High-Wattage LED Bulbs 403
 23.3.4 Bases of LED Bulbs 403
 23.3.5 Main Parameters of LED Bulbs 403
 23.3.6 LED Multicolor Bulbs 403
 23.3.7 LED Bulbs in Cars 404
 23.3.8 Other Uses of LED Bulbs 405
23.4 LED Tube Lights 406
 23.4.1 Fluorescent Tubes versus LED Tubes 406
 23.4.2 Applications and Parameters of LED Tubes 406
 23.4.3 LED Color Tubes 407
23.5 LED Street Lights 407
Chapter 25 Virtual Pixel Method to Enhance Image Quality

25.6 Virtual Pixel Method to Enhance Image Quality
- 25.6.1 Necessity of Virtual Pixel
- 25.6.2 Misleading Resolution Claims

25.7 Types of Virtual Pixels
- 25.7.1 Geometrical/Squared Virtual Pixel
- 25.7.2 Side Effects
- 25.7.3 Interpolated Virtual Pixel
- 25.7.4 Advantages over Geometrical Pixel

25.8 Building Larger LED Screens by Assembly of Elementary Modules

25.9 Gamma Correction

25.10 Examples of LED Screens
- 25.10.1 Single-Color LED Display Module
- 25.10.2 Dual-Color LED Display Module
- 25.10.3 Full-Color LED Display Module

25.11 LED Television (LED-Backlit LCD Television)
- 25.11.1 Edge-Lit LED TV
- 25.11.2 Full-Array RGB LED TV
- 25.11.3 Dynamic RGB LED TV
- 25.11.4 Pros and Cons of LED TV

25.12 Flexible Inorganic LED Displays

25.13 Discussion and Conclusions

References

Review Exercises

Chapter 26 Organic LED Displays

Learning Objectives

26.1 Evolution of Displays
- 26.1.1 From Bulky to Lightweight Displays
- 26.1.2 Two Types of OLED Displays

26.2 Passive Matrix Organic LED Display
- 26.2.1 Construction and Working Principle
- 26.2.2 Advantages
- 26.2.3 Drive Arrangements and Difficulties
- 26.2.4 Applications

26.3 Active Matrix Organic LED Display
- 26.3.1 Benefit of Driving with Active Matrix
- 26.3.2 Construction and Operation
- 26.3.3 Backplane of the Display
- 26.3.4 Advantages
- 26.3.5 Problems and Applications

26.4 TFT Backplane Technologies
- 26.4.1 Conventional and Hydrogenated Amorphous Silicon (a-Si and a-Si: H) TFT
- 26.4.2 Low-Temperature-Poly-Silicon TFT
Chapter 26 OLED Mobile Phone, TV, and Computer Displays

26.4.3 Metal-Oxide Thin-Film Transistor 457
26.4.4 Nanowire Transistor Circuitry 458
26.4.5 Choosing among Different Backplane Technologies 458
26.5 OLED Mobile Phone, TV, and Computer Displays 458
26.6 Discussion and Conclusions 460
References 461
Review Exercises 461

Chapter 27 Miscellaneous Applications of Solid-State Lighting 463

Learning Objectives 463
27.1 Power Signage 463
 27.1.1 Traffic Lights 464
 27.1.2 Automotive Signage 465
 27.1.3 Other Signage Applications 466
27.2 Fiber Optic Communication Using LEDs 466
 27.2.1 Structures and Materials of the LEDs Used 466
 27.2.2 LEDs versus Laser Diodes 467
27.3 Wireless Communication with Infrared and Visible Light Using LEDs 467
 27.3.1 Optical Wireless Technology 467
 27.3.2 Use of LEDs in Wireless Communication 468
27.4 Medical Applications of LEDs 469
 27.4.1 Operation Theater Light 469
 27.4.2 HEALS Treatment 469
 27.4.3 Skin-Related Therapies 469
 27.4.4 Treating Brain Injury 470
 27.4.5 Vitamin D Synthesis and Cytometry 471
 27.4.6 LED-on-the-Tip Endoscope 471
27.5 LEDs in Horticulture 471
27.6 Discussion and Conclusions 472
References 472
Review Exercises 473

Chapter 28 Smart Lighting 475

Learning Objectives 475
28.1 Infusing Intelligence or Smartness in Lighting Buildings 475
 28.1.1 At the Planning Stage of a Building 475
 28.1.2 Five Steps after the Building Is Constructed 476
 28.1.3 Aims and Scope of Smart Lighting Technology 476
 28.1.4 Computer Networking 477
 28.1.5 Programming Needs 477
 28.1.6 Emergency Lighting 477
28.2 Smart Lighting Control System 477
 28.2.1 Daylight Harvesting 478
28.2.2 Occupancy Control 478
28.2.3 Personal Control 479
28.2.4 Time Scheduling 479
28.2.5 Task Tuning 479
28.2.6 Control by Load Shedding 479
28.2.7 Other Options 480
28.2.8 Dirt Accumulation Prevention and Removal 480

28.3 Occupancy Sensing Devices 480
28.3.1 Types of Occupancy Sensors 480
28.3.2 Occupancy Sensor Features 482

28.4 Daylight-Sensing Devices 482

28.5 Design Aspects 484

28.6 Night-Time Exterior Lighting 484
28.6.1 Preferred Light Sources for Night Illumination 485
28.6.2 Glare Reduction 485
28.6.3 Preventing Light Pollution 485
28.6.4 Light Trespassing on Neighborhood 485
28.6.5 Light Uniformity, Facial Recognition, Shadow Effects, Surface Reflectances, and Finishes 486
28.6.6 Biological Effects of Colors 486
28.6.7 Exterior Lighting Controls 486

28.7 Discussion and Conclusions 486
References 487
Review Exercises 487

PART VI Future of Lighting

Chapter 29 Opportunities and Challenges of Solid-State Lighting 491

Learning Objectives 491
29.1 Prospective Growth in Solid-State Lighting 491
29.1.1 LED General Lighting during the Years “2012–2020” 491
29.1.2 OLED General Lighting in the Years “2013–2020” 491
29.2 Haitz and Tsao Predictions for the Years “2010–2020” 492
29.3 Research Areas and Technical Challenges 494
29.3.1 Preventing Droop 494
29.3.2 GaN LED Substrates 495
29.3.3 Using Narrow-Band Red Phosphors 497
29.3.4 Eschewing Phosphor Heating by Stokes Shift 498
29.3.5 Closing the Red-to-Green Efficacy Gap 498
29.3.6 Suppressing the Flickering of AC LED Lamps 498
29.3.7 Coating with a Reflective Plastic for Uniform Light Dispersal 498