Modified Nucleosides and Oligonucleotides with Alkynyl Side Chains:
Synthesis, Functionalization and Cross-Linking by the Copper Catalysed
Azide-Alkyne Cycloaddition

Modifizierte Nukleoside und Oligonukleotide mit Alkinyl-Seitenketten:
Synthese, Funktionalisierung und Vernetzung durch Kupfer-katalysierte
Azid-Alkin-Cycloaddition

dem Fachbereich Biologie/Chemie
der Universität Osnabrück

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

-Dr. rer. nat.-

vorgelegte Dissertation

-Thesis-

von

Suresh Shrimant Pujari

aus Gubbewad, Karnataka, India

Osnabrück 2014
Modified Nucleosides and Oligonucleotides with Alkynyl Side Chains: Synthesis, Functionalization and Cross-Linking by the Copper Catalysed Azide-Alkyne Cycloaddition

Table of Contents

1 Introduction .. 1

2 Subject of the Work ... 8

 2.1 Synthesis and Fluorogenic Dye Labelling of 8-Aza-7-deazaadenine-DNA by the Cu(I) Catalyzed Azide-Alkyne “Click” Cycloaddition .. 8

 2.2 Hydrogelation and Spontaneous Fiber Formation of 8-Aza-7-deazaadenine Nucleoside “Click” Conjugates ... 9

 2.3 Cross-Linked DNA Generated by “Bis-click” Reactions with Bifunctional Azides: Site Independent Ligation of Oligonucleotides via Nucleobase Alkynyl Chains 10

 2.4 Cross-Linked DNA: Propargylated Ribonucleosides as “Click” Ligation Sites for Bifunctional Azides .. 11

 2.5 Parallel Stranded DNA Stabilized with Internal Sugar Cross-Links: Synthesis and “Click” Ligation of Oligonucleotides Containing 2’-Propargylated Isoguanosine 12

 2.6 Oligonucleotides with “Clickable” Sugar Residues: Synthesis, Duplex Stability and Terminal versus Central Interstrand Cross-Linking of 2’-O-Propargylated 2-Aminoadenosine with a Bifunctional Azide ... 14

 2.7 High Density Functionalization of DNA with Short, Long and Branched Side Chains: Hybridization Problems with Duplexes Bearing Short Linkers 15

 2.8 Clickable G-Quadruplex Construction Cores Fully Loaded with AZT Molecules 16

3 Synthesis and Fluorogenic Dye Labelling of 8-Aza-7-deazaadenine-DNA by the Cu(I) Catalyzed Azide-Alkyne “Click” Cycloaddition ... 18

 3.1 Background ... 18

 3.2 Synthesis of 8-Aza-7-deaza-7-(octa-1,7-diynyl)-2’-deoxyadenosine (15) 19

 3.3 Synthesis of Phosphoramidite Building Block 41 .. 20
3.4 "Click" Functionalization of 8-Aza-7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine (15) with azides 4, 25-26 and 42
3.5 Photophysical Properties of Nucleoside "Click" Conjugates 47, 72-74
3.6 Duplex Stability of Oligonucleotides Containing 8-Aza-7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine (15)
3.7 Post-Synthetic Functionalization of Oligonucleotides with Reporter Groups
3.8 Photophysical Properties of "Click" Functionalized Nucleosides and Oligonucleotides
3.9 Single Base Mismatch Discrimination against the Oligonucleotide 8-Aza-7-deaza anthracence "Click" Conjugate 83
3.10 Effect of Polar and Non-polar Reporter Groups on the Stability of the Duplex

4 Hydrogelation and Spontaneous Fiber Formation of 8-Aza-7-deazaadenine Nucleoside "Click" Conjugates
4.1 Background
4.2 Synthesis of Short, Long and Branched Armed Monomers and CuAAC "Click" Conjugation
4.3 Water Gelation of Nucleoside "Click" Conjugates 45-48
4.4 Stability and Rheological Properties of the Hydrogels Formed from Nucleoside "Click" Conjugates
4.4.1 Hydrogelation of Alkynylated Nucleosides and Their Corresponding "Click" Conjugates
4.4.2 Rheological Properties of Hydrogels Formed from Nucleoside "Click" Conjugates 45 and 46
4.5 Scanning Electron Microscope Analysis of the Xerogels of "Click" Conjugates 45 and 46

5 Cross-Linked DNA Generated by "Bis-click" Reactions with Bis-functional Azides: Site Independent Ligation of Oligonucleotides via Nucleobase Alkynyl Chains
5.1 Background
5.2 Cross-Linking of Alkynylated Nucleoside with Bisazide by "Bis-Click" Reaction
5.3 Inter-Strand Cross-Linking of Oligonucleotides by "Bis-Click" and Stepwise "Click" Reaction
5.3.1 "Bis-Click" Reaction to Inter-Strand Cross-Link Identical DNA Units Forming Homodimers ... 42
5.3.2 Stepwise "Click" Reaction to Inter-Strand Cross-Link Nonidentical DNA Units .. 43
5.4 Characterization of Inter-Strand Cross-Linked Oligonucleotides .. 43
5.4.1 Mobility Shift Analysis of Cross-Linked Oligonucleotides by Ion-Exchange HPLC .. 43
5.4.2 MALDI-TOF Mass Spectrum Analysis ... 44
5.5 Influence of Cross-Links on Stability of Duplexes at Central and Terminal Positions .. 44

6 Cross-Linked DNA: Propargylated Ribonucleosides as “Click” Ligation Sites for Bifunctional Azides ... 46
6.1 Background ... 46
6.2 Synthesis of Propargylated Monomers and Click Conjugation by “Bis-Click” Reaction ... 47
6.3 Synthesis, Characterization and “Bis-Click” Cross-Linking of Oligonucleotides ... 49
6.4 Effect of Cross-Links on the Stability of Inter-Strand Cross-Linked Duplexes ... 51

7 Parallel Stranded DNA Stabilized with Internal Sugar Cross-Links: Synthesis and Click Ligation of Oligonucleotides Containing 2'-Propargylated Isoguanosine .. 53
7.1 Background ... 53
7.2 Synthesis of Phosphoramidite Building Blocks of Propargyl Cytosine and Propargyl Isoguanosine ... 55
7.2.1 Synthesis of Phosphoramidite Building Blocks 57 and 58 .. 55
7.2.2 Synthesis of Phosphoramidite Building Blocks 55 and 56 .. 56
7.3 Inter-Strand Cross-Linking of DNA with Chelating and Non-Chelating Bisazides ... 57
7.3.1 Inter-Strand Cross-Linking of Oligonucleotides by Nonchelating Bisazide 34 .. 57
7.3.3 Inter-Strand Cross-Linking of Oligonucleotides by Chelating Bisazide 36 .. 58
7.4 Characterization of Cross-Linked Oligonucleotides by PAGE and Ion-Exchange HPLC ... 59
7.4.1 Ion Exchange HPLC of Noncross-Linked and Cross-Linked Oligonucleotides .. 59
7.4.2 Gel Electrophoresis of Noncross-linked and Cross-Linked Oligonucleotides .. 60
7.5 Stability of Cross-Linked Duplexes with Parallel and Antiparallel Orientation .. 61
Oligonucleotides with “Clickable” Sugar Residues: Synthesis, Duplex Stability and Terminal versus Central Interstrand Cross-Linking of 2'-O-Propargylated 2-Aminoadenosine with a Bifunctional Azide ... 64

8.1 Background ... 64
8.2 Synthesis of Phosphoramidite Building Blocks 60, 61 and 161 65
8.3 Cross-Linking of 2'-O-Propargyl-2-Aminoadenosine Nucleoside 59 with Bisazide 34 .. 68
8.4 Synthesis and Thermal Stability of DNA Duplexes and DNA-RNA Hybrids Containing 2'-O-Propargyl-2-Aminoadenosine (59) .. 69
8.5 Inter-Strand Cross-Linking of Oligonucleotides by Stepwise Click Ligation 71
8.6 Ion-Exchange HPLC Profiles of Alkynylated, Monofunctionalized and Cross-linked Oligonucleotides ... 72
8.7 Thermal Stability of Cross-Linked Duplexes and Hairpins 73

9 Results and Discussion of Unpublished Work ... 76

9.1 High Density Functionalization of DNA with Short, Long and Branched Side Chains: Hybridization Problems with Duplexes Bearing Short Linkers 76
9.1.1 Background ... 76
9.1.2 Synthesis of Phosphoramidite Building Block 62 ... 77
9.1.3 Functionalization of Nucleosides 15, 43 and 44 by the CuAAC Click Reaction 78
9.1.4 Photophysical Properties of Nucleoside Click Conjugates 79
9.1.5 Effect of Alkynyl Modified Residues on the Duplex Stability 80
9.1.6 Post-Synthetic Functionalization and Fluorescence Studies of Dye Labelled Oligonucleotides .. 81
9.1.6.1 Click Reaction on Oligonucleotides Containing 15, 43 and 44 81
9.1.6.2 Fluorescence Behaviour of Fluorophore upon High Density Functionalization 82
9.1.7 Stability of Duplexes after Post-Synthetic High-Density Functionalization via CuAAC Click Reaction .. 83

9.2 Clickable G-Quadruplex Construction Cores Fully Loaded with AZT Molecules .. 87
9.2.1 Background ... 87
9.2.2 Synthesis of Phosphoramidite Building Block 223 .. 88