Nonparametric Estimation under Shape Constraints
Estimators, Algorithms and Asymptotics

Piet Groeneboom
Delft University of Technology

Geurt Jongbloed
Delft University of Technology
Contents

Preface and Acknowledgments page ix

1 Introduction 1
 1.1 Is There a Warming-up of Lake Mendota? 1
 1.2 Onset of Nonlethal Lung Tumor 3
 1.3 The Transmission Potential of a Disease 8
 1.4 The Bangkok Cohort Study 10
 1.5 Inverse Problems, Censoring, Mixture Models and Shape Constraints 11
 1.6 Outline of the Book 15
 Exercises 16
 Bibliographic Remarks 17

2 Basic Estimation Problems with Monotonicity Constraints 18
 2.1 Monotone Regression 18
 2.2 Monotone Density Estimation 22
 2.3 Estimating a Distribution Function from Current Status Data 28
 2.4 Deconvolution Problem with Jump Kernel 31
 2.5 Generalized Isotonic Regression Problems 33
 2.6 Estimating a Monotone Hazard Rate 37
 Exercises 42
 Bibliographic Remarks 46

3 Asymptotic Theory for the Basic Monotone Problems 47
 3.1 Consistency 47
 3.2 Heuristic Asymptotics for the Grenander Estimator 51
 3.3 Convex Minorants: Basic Properties 55
 3.4 Some Empirical Process Theory 57
 3.5 Asymptotic Distribution in Exponential Deconvolution Model 60
 3.6 Limit Distribution of the Grenander Estimator 64
 3.7 Some Martingale Theory 67
 3.8 Asymptotic Distribution of the MLE in the Current Status Model 68
3.9 Chernoff's Distribution 73
3.10 The Concave Majorant of Brownian Motion and Brownian Bridge 77
Exercises 80
Bibliographic Remarks 86

4 Other Univariate Problems Involving Monotonicity Constraints 87
4.1 Wicksell's Corpuscle Problem 87
4.2 Convex Regression 91
4.3 Convex Density Estimation 93
4.4 Log Concave Densities 101
4.5 Star Shaped Distributions on [0, 1] 105
4.6 Deconvolution Problems 108
4.7 Interval Censoring Case 2 112
Exercises 116
Bibliographic Remarks 119

5 Higher Dimensional Problems 121
5.1 Competing Risks with Current Status Observations 121
5.2 Bivariate Interval Censoring 127
5.3 Current Status with Continuous Marks 132
5.4 Multivariate Log Concave Densities 134
Exercises 136
Bibliographic Remarks 138

6 Lower Bounds on Estimation Rates 139
6.1 Global and Local Minimax Risk 139
6.2 A Minimax Lower Bound Theorem 141
6.3 Lower Bound Based on the Van Trees Inequality 144
6.4 Applications 149
Exercises 152
Bibliographic Remarks 154

7 Algorithms and Computation 155
7.1 Algorithm: Concept and Convergence 156
7.2 The EM Algorithm 159
7.3 The Iterative Convex Minorant Algorithm 170
7.4 Vertex Direction Algorithms 177
7.5 The MLE in the Competing Risks Model with Interval Censoring 186
Exercises 192
Bibliographic Remarks 195
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Shape and Smoothness</td>
<td>197-215</td>
</tr>
<tr>
<td>8.1</td>
<td>Smoothing a Shape-Constrained Estimator</td>
<td>198</td>
</tr>
<tr>
<td>8.2</td>
<td>Maximizing a Smoothed Objective Function</td>
<td>200</td>
</tr>
<tr>
<td>8.3</td>
<td>Penalized M-Estimation</td>
<td>204</td>
</tr>
<tr>
<td>8.4</td>
<td>Monotonic Rearrangements of Smooth Estimators</td>
<td>208</td>
</tr>
<tr>
<td>8.5</td>
<td>Maximum Smoothed Likelihood Estimation in the Current Status Model</td>
<td>210</td>
</tr>
<tr>
<td>8.6</td>
<td>Smooth Estimation for Interval Censoring Case 2</td>
<td>215</td>
</tr>
<tr>
<td>8.7</td>
<td>Smooth Estimation in the Bivariate Interval Censoring Model</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Remarks</td>
<td>225</td>
</tr>
<tr>
<td>9</td>
<td>Testing and Confidence Intervals</td>
<td>226-281</td>
</tr>
<tr>
<td>9.1</td>
<td>Testing for a Monotone Hazard</td>
<td>227</td>
</tr>
<tr>
<td>9.2</td>
<td>k-Sample Tests for Decreasing Densities</td>
<td>238</td>
</tr>
<tr>
<td>9.3</td>
<td>Two-Sample Tests for Current Status Data</td>
<td>250</td>
</tr>
<tr>
<td>9.4</td>
<td>Two-Sample Tests for Case 2 Interval Censored Data</td>
<td>263</td>
</tr>
<tr>
<td>9.5</td>
<td>Pointwise Confidence Intervals for the Current Status Model</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Remarks</td>
<td>281</td>
</tr>
<tr>
<td>10</td>
<td>Asymptotic Theory of Smooth Functionals</td>
<td>283-312</td>
</tr>
<tr>
<td>10.1</td>
<td>Estimating the Expectation in Deconvolution Models</td>
<td>284</td>
</tr>
<tr>
<td>10.2</td>
<td>Estimating Smooth Functionals in the Current Status Model</td>
<td>286</td>
</tr>
<tr>
<td>10.3</td>
<td>The Integral Equation for Interval Censoring Case 2</td>
<td>291</td>
</tr>
<tr>
<td>10.4</td>
<td>Smooth Functional Estimation in the Interval Censoring Case 2 Model</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Remarks</td>
<td>312</td>
</tr>
<tr>
<td>11</td>
<td>Pointwise Asymptotic Distribution Theory for Univariate Problems</td>
<td>313-358</td>
</tr>
<tr>
<td>11.1</td>
<td>The LS Estimator of a Convex Density</td>
<td>313</td>
</tr>
<tr>
<td>11.2</td>
<td>Tail Bounds for the MLE in the Current Status Model</td>
<td>320</td>
</tr>
<tr>
<td>11.3</td>
<td>The SMLE in the Current Status Model</td>
<td>327</td>
</tr>
<tr>
<td>11.4</td>
<td>The SMLE for Interval Censoring Case 2</td>
<td>338</td>
</tr>
<tr>
<td>11.5</td>
<td>The MSLE for Interval Censoring Case 2</td>
<td>344</td>
</tr>
<tr>
<td>11.6</td>
<td>Estimation of a Nondecreasing Hazard in the Right Censoring Model: SMLE</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Remarks</td>
<td>358</td>
</tr>
</tbody>
</table>
Contents

12 **Pointwise Asymptotic Distribution Theory for Multivariate Problems** 360
 12.1 The ML Estimator in the Competing Risk Model with Current Status Data 360
 12.2 The SMLE in the Current Status Competing Risk Model 363
 12.3 The Bivariate Current Status Model 369
 Exercises 376
 Bibliographic Remarks 377

13 **Asymptotic Distribution of Global Deviations** 378
 13.1 The L_1 Loss of the Grenander Estimator 378
 13.2 Empirical L_1-Test for a Monotone Hazard 385
 13.3 Two-Sample Tests for Current Status Data 392
 Exercises 398
 Bibliographic Remarks 399

References 401

Author Index 409

Subject Index 412