MODELING, ANALYSIS AND DESIGN OF CONTROL SYSTEMS IN MATLAB AND SIMULINK

Dingyú Xue
Northeastern University, China

YangQuan Chen
University of California, Merced, USA
Contents

Foreword v
Preface ix

1. Introduction to Simulation and Computer-aided Design of Control Systems 1
 1.1 A Brief Historic Review of the Development of Computer-aided Design of Control Systems 1
 1.2 Introduction to the CACSD Languages and Environments 2
 1.3 Development of Simulation Software 5
 1.4 MATLAB/Simulink and Their CACSD Toolboxes 6
 1.5 Overview of CACSD Approaches 8
 1.6 Fundamental Structures and Contents of This Book 10
 1.7 Problems 12
 Bibliography and References 14

2. Fundamentals of MATLAB Programming 17
 2.1 Basics in MATLAB Programming 18
 2.1.1 Variables and Constants in MATLAB 18
 2.1.2 Data Structures 19
 2.1.3 Basic Statement Structures of MATLAB 20
 2.1.4 Colon Expressions 21
 2.1.5 Sub-matrix Extraction 22
 2.2 Basic Mathematical Operations 22
 2.2.1 Algebraic Calculations of Matrices 22
 2.2.2 Logic Operations of Matrices 24
 2.2.3 Relationship Operations of Matrices 24
 2.2.4 Simplifications and Presentations of Analytical Results 24
 2.2.5 Basic Number Theory Computations 26
 2.3 Flow Control Structures in MATLAB Programming 27
 2.3.1 Loop Control Structures 27

xiii
2.3.2 Conditional Structure ... 28
2.3.3 Switch Structure .. 29
2.3.4 Trial Structure .. 29

2.4 Function Writing and Debugging 30
2.4.1 Basic Structure of MATLAB Functions 30
2.4.2 Functions with Variable Numbers of Inputs and Outputs . 33
2.4.3 Anonymous and Inline Functions 33
2.4.4 Pseudo Codes .. 34

2.5 Two-dimensional Graphics 34
2.5.1 Basic Statements of Two-dimensional Plotting 34
2.5.2 Other Graphics Functions with Applications 37
2.5.3 Implicit Function Visualizations 39
2.5.4 Graph Editing and Decorations 39

2.6 Three-dimensional Visualization 41
2.6.1 Three-dimensional Curves 41
2.6.2 Three-dimensional Surfaces 41
2.6.3 Viewpoint Setting in 3D Plots 44

2.7 Graphical User Interface Design in MATLAB 45
2.7.1 Graphical User Interface Tool – Guide 46
2.7.2 Handle Graphics and Properties of Objects 46
2.7.3 Menu System Design ... 52
2.7.4 An Illustrative Example in GUI Design 52
2.7.5 Toolbar Design ... 54
2.7.6 Embedding ActiveX Components in GUIs 56

2.8 Problems .. 57

Bibliography and References 60

3. MATLAB Solutions to Scientific Computation Problems 61

3.1 MATLAB Solutions to Linear Algebra Problems 62
3.1.1 Fundamental Analysis of Matrices 62
3.1.2 Matrix Decomposition 64
3.1.3 Matrix Exponential e^A and Exponential Function e^{At} . 66

3.2 Solutions of Algebraic Equations 66
3.2.1 Solutions of Linear Algebraic Equations 66
3.2.2 Solutions of Nonlinear Equations 69
3.2.3 Solutions of Nonlinear Matrix Equations 72

3.3 Solutions of Ordinary Differential Equations 74
3.3.1 Numerical Solutions to First-order Explicit ODEs 74
3.3.2 Conversions of ODEs .. 77
3.3.3 Validations of Numerical Solutions 78
3.3.4 Analytical Solutions to Linear ODEs 80

3.4 MATLAB Solutions to Optimization Problems 81
3.4.1 Unconstrained Optimization Problems ... 81
3.4.2 Constrained Optimization Problems ... 82
3.4.3 Least Squares Curve Fitting ... 84
3.5 Laplace and z Transforms and MATLAB Solutions 86
 3.5.1 Laplace Transform .. 86
 3.5.2 z Transform .. 87
3.6 Problems .. 88
Bibliography and References ... 94

4. Mathematical Models of Linear Control Systems 95
 4.1 Linear System Models of Linear Continuous Systems 96
 4.1.1 Transfer Function Models ... 96
 4.1.2 State Space Models ... 99
 4.1.3 State Space Models with Internal Delays 100
 4.1.4 Zero–pole–gain Models ... 100
 4.1.5 Transfer Function Matrices of Multivariable Systems 102
 4.2 Mathematical Models of Linear Discrete-time Systems 103
 4.2.1 Discrete-time Transfer Function Models 103
 4.2.2 Discrete-time State Space Models ... 104
 4.3 Equivalent Conversions of System Models 105
 4.3.1 Conversion Between Continuous and Discrete-time Models 105
 4.3.2 Converting to Transfer Function Models 107
 4.3.3 State Space Realization of Control Systems 108
 4.3.4 Balanced Realizations ... 108
 4.3.5 Minimum Realization of State Space Models 109
 4.3.6 Conversion between Transfer Functions and Symbolic Expressions .. 110
 4.4 Block Diagram Description and Simplification 110
 4.4.1 Typical Connections of Control Systems 110
 4.4.2 Delay Loop Processing with State Space Models 114
 4.4.3 Equivalent Transforms When the Nodes Are Moved 116
 4.4.4 Simplification of Complicated Block Diagrams 117
 4.4.5 Model Simplification Using An Algebraic Approach 119
 4.5 Model Reduction of Linear Systems .. 121
 4.5.1 Padé Approximations and Routh Approximations 122
 4.5.2 Padé Approximations to Models with Time Delays 125
 4.5.3 Sub-optimal Model Reduction to Models with Time Delays 127
 4.5.4 Reduction Approaches for State Space Models 131
 4.6 Identification of Linear Systems .. 134
 4.6.1 Identification of Discrete-time Models 134
 4.6.2 Order Selection in Identification .. 138
 4.6.3 Generation of Signals for Identification 140
5. Computer-Aided Analysis of Linear Control Systems

5.1 Properties of Linear Control Systems
5.1.1 Stability of Linear Systems
5.1.2 Internal Stability of Feedback Control Systems
5.1.3 Similarity Transformation of Linear Control Systems
5.1.4 Controllability of Linear Systems
5.1.5 Observability of Linear Systems
5.1.6 Canonical Kalman Decompositions
5.1.7 MATLAB Solutions to Canonical State Space Models
5.1.8 Norms of Linear Systems

5.2 Analytical Time Domain Responses of Linear Systems
5.2.1 Analytical Solutions with Direct Integration Method
5.2.2 Analytical Solutions with State Augmentation Method
5.2.3 Analytical Solutions with Laplace and z Transforms
5.2.4 Time Responses of Systems with Nonzero Initial Conditions
5.2.5 Time Response Specifications of Second-order Systems

5.3 Numerical Solutions of Time Domain Responses
5.3.1 Step Responses and Impulse Responses
5.3.2 Time Domain Responses for Arbitrary Inputs
5.3.3 Responses for Systems with Nonzero Initial Conditions

5.4 Root Locus Analysis

5.5 Frequency Domain Analysis
5.5.1 Frequency Domain Analysis of Single Variable Systems
5.5.2 Stability Assessment of Feedback Systems
5.5.3 Gain Margins and Phase Margins

5.6 Frequency Domain Analysis of Multivariable Systems
5.6.1 Frequency Domain Analysis of Multivariable Systems
5.6.2 Diagonal Dominance Analysis
5.6.3 Singular Value Plots for Multivariable Systems

5.7 Problems

6. Simulink and Simulation of Nonlinear Systems

6.1 Fundamentals of Simulink Modeling
6.1.1 Introduction to Simulink
6.1.2 Commonly Used Blocks in Simulink
6.1.3 Other Commonly Used Blocksets
6.2 Simulink Modeling and Simulation
6.2.1 Introduction to Simulink Modeling Methodology
6.2.2 Simulation Algorithms and Simulation Parameter Selections
6.2.3 An Illustrative Example of Simulink Modeling
6.3 Simulink Modeling of Various Control Systems
6.4 Analysis and Simulation of Nonlinear Systems
6.4.1 Modeling of Piecewise Nonlinearities
6.4.2 Linearization of Nonlinear Systems
6.5 Subsystem and Model Masking Methods
6.5.1 Subsystem Creation
6.5.2 Subsystem Masking
6.5.3 Constructing Users’ Own Block Library
6.6 M-function, S-function and Their Applications
6.6.1 Basic Structure of M-function Blocks
6.6.2 Basic Structures of S-functions
6.6.3 Examples of MATLAB S-function Programming
6.6.4 Mask an S-Function Block
6.7 Problems
Bibliography and References

7. Classical Design Approaches of Control Systems
7.1 Design of Phase Lead–lag Compensators
7.1.1 Lead–leg Compensators
7.1.2 A Design Algorithm for Lead–lag Compensator
7.2 State Space-based Controller Design Strategies
7.2.1 State Feedback Control
7.2.2 Linear Quadratic Optimal Regulators
7.2.3 Pole Placement Controller Design
7.2.4 Observer Design and Observer-based Regulators
7.3 Optimal Controller Design
7.3.1 Introduction to Optimal Control
7.3.2 An Optimal Controller Design Interface
7.3.3 Other Applications of OCD Interface
7.4 Controller Design Interfaces in Control System Toolbox
7.4.1 Introduction to MATLAB Controller Design Interface
7.4.2 An Example of Parameter Automatic Tuning for Single Variable Systems
7.5 Frequency Domain Design Methods for Multivariable Systems
7.5.1 Diagonal Dominant and Pseudo-diagonalization
7.5.2 Parameter Optimization Design for Multivariable Systems 302
7.5.3 Optimal Controller Design with OCD Interface 308
7.6 Decoupling Control of Multivariable Systems 310
7.6.1 Decoupling Control with State Feedback 310
7.6.2 Decoupling of State Feedback with Pole Placement 311
7.7 Problems 314

Bibliography and References 317

8. Parameter Tuning of PID Controllers 319

8.1 Introduction to PID Controller Design 320
8.1.1 Continuous PID Controllers 320
8.1.2 Discrete PID Controllers 322
8.1.3 Variations of PID Controllers 323
8.2 First-order Delay Model Approximation to Plant Models 324
8.2.1 FOPDT Model by Step Responses 324
8.2.2 Fitting by Frequency Domain Responses 326
8.2.3 Transfer Function-based Identification 327
8.2.4 Sub-optimal Reduction Method 327
8.3 Parameter Tuning of PID Controllers for FOPDT Plants 328
8.3.1 Ziegler-Nichols Empirical Formula 328
8.3.2 Improved Ziegler-Nichols Algorithm 330
8.3.3 Improved PID Control Structure and Algorithms 332
8.3.4 Chien-Hrones-Reswick Parameter Tuning Algorithm 335
8.3.5 Optimal PID Controller Tuning Rule 336
8.4 PID Tuner — A PID Controller Design Interface 338
8.5 PID Parameters Tuning for Other Plant Types 341
8.5.1 PD and PID Parameter Tuning for IPD Plants 341
8.5.2 PD and PID Parameter Tuning for FOLIPD Plants 342
8.5.3 PD and PID Parameter Tuning for Unstable FOPDT Plants 343
8.5.4 Interactive PID Controller Tuning Interface 344
8.5.5 PID Controller Design and Tuning 347
8.5.6 Automatic Tuning Tool based on MATLAB and Simulink 350
8.6 OptimPID — An Optimal PID Controller Design Interface 351
8.7 Problems 356

Bibliography and References 358

9. Robust Control and Robust Controller Design 359

9.1 Linear Quadratic Gaussian Control 360
9.1.1 LQG Problems 360
9.1.2 Solving LQG Problems with MATLAB 360
9.1.3 LQG Control with Loop Transfer Recovery 364
9.2 General Descriptions to Robust Control Problems ... 369
 9.2.1 Small Gain Theorem ... 369
 9.2.2 Structures of Robust Controllers ... 369
 9.2.3 Description of Loop Shaping Techniques ... 372
 9.2.4 MATLAB Description of Robust Control Systems ... 373
9.3 Norm-based Robust Controller Design ... 377
 9.3.1 Design of \mathcal{H}_∞ and \mathcal{H}_2 Robust Controllers 377
 9.3.2 Other Robust Controller Design Functions .. 382
 9.3.3 Youla Parameterization .. 386
9.4 Linear Matrix Inequality Theory and Solutions ... 387
 9.4.1 General Descriptions of Linear Matrix Inequalities ... 387
 9.4.2 MATLAB Solutions to Linear Matrix Inequality Problems 390
 9.4.3 Optimization Problem Solutions with YALMIP Toolbox 393
 9.4.4 Simultaneous Stabilization Multiple Linear Models .. 394
 9.4.5 Robust Optimal Controller Design with LMI Solvers 395
9.5 Quantitative Feedback Theory and Design Methods .. 397
 9.5.1 Introduction to Quantitative Feedback Theory .. 397
 9.5.2 QFT Design Method for Single Variable Systems ... 398
9.6 Problems .. 404
Bibliography and References ... 405

10. Adaptive and Intelligent Control Systems Design ... 407
 10.1 Design of Adaptive Control Systems ... 408
 10.1.1 Design and Simulation of Model Reference Adaptive Control Systems 409
 10.1.2 Solutions of Polynomial Diophantine Equations ... 411
 10.1.3 d-step Ahead Forecast .. 413
 10.1.4 Design of Minimum Variance Controllers .. 414
 10.1.5 Generalized Minimum Variance Control ... 416
 10.2 Simulation and Design of Model Predictive Control Systems 418
 10.2.1 Dynamic Matrix Control ... 419
 10.2.2 Design of Model Predictive Controllers with MATLAB 420
 10.2.3 Design and Simulation of Model Predictive Control for Complicated Plants 426
 10.2.4 Generalized Predictive Control Systems and Simulations 429
 10.3 Fuzzy Control and Fuzzy Logic Controller Design .. 432
 10.3.1 Fuzzy Logic and Fuzzy Inference .. 432
 10.3.2 Design of Fuzzy PD Controller .. 434
 10.3.3 Design of Fuzzy PID Controllers ... 439
 10.4 Neural Networks and Neural Network Controller Design 442
 10.4.1 Introduction to Neural Networks .. 443
 10.4.2 Design of PID Controller with Single Neurons ... 444
10.4.3 PID Controller with Back-propagation Neural Networks . . 447
10.4.4 PID Controller with Radial Basis Function-based Neural Network .. 449
10.4.5 Design and Simulation of Neural Network Controllers . . 451

10.5 Simulation Analysis of Iterative Learning Control 456
10.5.1 Principles of Iterative Learning Control 456
10.5.2 Iterative Learning Control Algorithms 458

10.6 Design of Global Optimal Controllers 462
10.6.1 Introduction to Genetic Algorithm 462
10.6.2 Solving Global Optimization Problems with Genetic Algorithms .. 464
10.6.3 Particle Swarm Optimization Algorithms and Applications 467
10.6.4 Optimal Controller Design with Global Optimization Algorithms .. 468

10.7 Problems ... 471

Bibliography and References .. 474

11. Analysis and Design of Fractional-order Systems 477
11.1 Definitions and Numerical Computations in Fractional-order Calculus .. 478
11.1.1 Definitions of Fractional-order Calculus 478
11.1.2 The Relationship of Different Definitions 479
11.1.3 Properties of Fractional-order Calculus 480

11.2 Numerical Computations in Fractional-order Calculus 480
11.2.1 Numerical Solutions with Grünwald–Letnikov Definition 481
11.2.2 Numerical Solutions with Caputo Definition 482
11.2.3 Mittag–Leffler Functions and Their Computations 483

11.3 Solutions of Linear Fractional-order Systems 485
11.3.1 Numerical Solutions of Linear Fractional-order Differential Equations .. 485
11.3.2 Numerical Solutions of Caputo Differential Equations ... 487
11.3.3 Some Important Laplace Transforms 489
11.3.4 Analytical Solutions of Commensurate-order Linear Differential Equations .. 489
11.3.5 Analytical Solutions of Linear Fractional-order Differential Equations .. 491

11.4 Modeling and Analysis of Fractional-order Transfer Functions 491
11.4.1 FOTF — Creation of a MATLAB Object 492
11.4.2 Interconnections of FOTF Blocks 494
11.4.3 Analysis of FOTF Objects 496
11.4.4 Frequency Domain Analysis of FOTF Objects 499
11.4.5 Time Domain Analysis of FOTF Objects 499
11.4.6 Root Locus for Commensurate-order Systems 501
11.4.7 State Space Models of Commensurate-order Systems 502
11.5 Approximation and Reduction of Fractional-order Systems 503
11.5.1 Oustaloup Filter for Fractional-order Differentiators 503
11.5.2 Approximations of Fractional-order Controllers 505
11.5.3 Optimal Reduction Algorithm for Fractional-order Models 506
11.6 Simulation Methods for Complicated Fractional-order Systems 508
11.6.1 Simulation with Numerical Laplace Transform 508
11.6.2 Block Diagram Modeling and Simulation of Linear
Fractional-order Systems 510
11.6.3 Block Diagram Modeling and Simulation of Nonlinear
Fractional-order Systems 512
11.7 Design of Optimal Fractional-order PID Controllers 513
11.7.1 Optimal Design of $PI^D\mu$ Controllers 513
11.7.2 OptimFOPID — An Optimal Fractional-order PID
Controller Design Interface 518
11.8 Problems .. 519
Bibliography and References 521

12. Hardware-in-the-loop Simulation and Real-time Control 523
12.1 Introduction to dSPACE and Commonly Used Blocks 523
12.2 Introduction to Quanser System and Its Blocks 525
12.2.1 Introduction to Commonly Used Blocks in Quanser 525
12.2.2 Brief Introduction to Plants in Quanser Rotary Series 526
12.3 An Example of Hardware-in-the-loop Simulation and Real-time
Control ... 528
12.3.1 Mathematical Description of the Plant Model 528
12.3.2 Real-time Experiments with Quanser 530
12.3.3 Real-time Experiments with dSPACE 532
12.4 Low-cost Realizations of Hardware-in-the-loop Simulation 534
12.4.1 Arduino Interface Installation and Settings 534
12.4.2 Applications of Arduino Control 535
12.4.3 The MESA Box 537
12.5 Problems .. 538
Bibliography and References 538

Appendix A Some Practical Plant Models 539
A.1 Well-known Benchmark Problems 539
A.1.1 Control of the F-14 Aircraft Model 539
A.1.2 ACC Benchmark Problem 540
A.2 Other Engineering Models 541
A.2.1 Servo Control System Model 541