CONTENTS

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition

PART 1 BASIC MECHANICS

Chapter 1 Particle Kinematics

1.1 Introduction
1.2 Particle Position Description
1.3 Vector Differentiation
References
Problems

Chapter 2 Newtonian Mechanics

2.1 Introduction
2.2 Newton’s Laws
2.3 Single Particle Dynamics
2.4 Dynamics of a System of Particles
2.5 Dynamics of a Continuous System
2.6 Rocket Problem
References
Problems

Chapter 3 Rigid Body Kinematics

3.1 Introduction
3.2 Direction Cosine Matrix
3.3 Euler Angles
3.4 Principal Rotation Vector
3.5 Euler Parameters
3.6 Classical Rodrigues Parameters
Chapter 7 Hamilton's Generalized Formulations of Analytical Dynamics

7.1 Introduction 339
7.2 Hamiltonian Function 339
7.3 Relationship of Hamiltonian Function to Work/Energy Integral 344
7.4 Hamilton's Canonical Equations 349
7.5 Poisson's Brackets 353
7.6 Canonical Coordinate Transformations 356
7.7 Perfect Differential Criterion for Canonical Transformations 359
7.8 Transformation Jacobian Perspective on Canonical Transformations 362

References 364
Problems 364

Chapter 8 Nonlinear Spacecraft Stability and Control 367

8.1 Introduction 367
8.2 Nonlinear Stability Analysis 367
8.3 Generating Lyapunov Functions 386
8.4 Nonlinear Feedback Control Laws 405
8.5 Lyapunov Optimal Control Laws 421
8.6 Linear Closed-Loop Dynamics 427
8.7 Reaction Wheel Control Devices 433
8.8 Variable Speed Control Moment Gyroscopes 437

References 464
Problems 466

PART 2 CELESTIAL MECHANICS

Chapter 9 Classical Two-Body Problem 471

9.1 Introduction 471
9.2 Geometry of Conic Sections 472
9.3 Coordinate Systems 480
9.4 Relative Two-Body Equations of Motion 488
9.5 Fundamental Integrals 491
9.6 Classical Solutions 503

References 519
Problems 520

Chapter 10 Restricted Three-Body Problem 527

10.1 Introduction 527