Contents

Preface

1. General Description and Quantization of EM Fields
 1.1 Introduction
 1.2 Maxwell’s Equations for the EM Field
 1.3 Wave Equation
 1.4 Energy of the EM Wave
 1.4.1 Normalization of the EM Field
 1.4.2 Hamiltonian of the EM Wave
 1.5 Quantization of the EM Field
 1.6 Summary

2. Hamiltonians for Quantum Optics
 2.1 Introduction
 2.2 Interaction Hamiltonian
 2.3 Hamiltonian of an Atom
 2.3.1 A Two-Level System
 2.3.2 Spin Operators
 2.3.3 Atomic Dipole Moment
 2.4 Total Hamiltonian and the Rotating Wave Approximation

3. Detection of the EM Field and Correlation Functions
 3.1 Introduction
 3.2 Semiclassical Theory of Photodetection
 3.2.1 First-Order Correlation Function
 3.2.2 Second-Order Correlation Function
 3.2.3 Average Number of Photocounts
 3.2.4 Variance of the Number of Photocounts
 3.3 Quantum Theory of Photodetection
4 Representations of the EM Field 39
4.1 Introduction 39
4.2 Fock States Representation 40
 4.2.1 Single-Mode Number States 40
 4.2.2 Multi-Mode Number States 43
4.3 Correlation Functions for a Field in a Photon Number State 44
 4.3.1 Normalized Second-Order Intensity Correlation Function 44
 4.3.2 Two-Level Atom as a Source of Antibunched Light 46
 4.3.3 Fluctuations of the Field Amplitudes 47
4.4 Probability Distributions of Photons 47
 4.4.1 Thermal Distribution 48
 4.4.2 Poisson Distribution 51
4.5 Coherent States of the EM Field 53
 4.5.1 Displacement Operator 56
 4.5.2 Properties of the Displacement Operator 57
 4.5.3 Representation in Terms of Coherent States 57

5 Photon Phase Operator 61
5.1 Introduction 61
5.2 Exponential Phase Operator 61
5.3 Susskind-Glogower Phase Operator 63
5.4 Unitary Exponential Phase Operator 67
5.5 Pegg-Barnett Phase Operator 71

6 Squeezed States of Light 77
6.1 Introduction 77
6.2 Definition of Squeezed States of Light 78
6.3 Squeezed Coherent States 82
6.4 Multi-Mode Squeezed States 91
6.5 Squeezed States of Atomic Spin Variables 94
6.6 Spin Squeezing 97
6.7 Squeezing Spectrum of the EM Field 99
6.8 Detection of Squeezed States of Light 100
 6.8.1 Homodyne Detection Scheme 100
7 Phase Space Representations of the Density Operator

7.1 Introduction

7.2 Density Operator
 7.2.1 Density Operator of a Pure State
 7.2.2 Density Operator of a Mixed State
 7.2.3 The Basic Properties of the Density Operator

7.3 Number State Representation

7.4 Coherent States P Representation

7.5 Generalized P Representations

7.6 Q Representation

7.7 Wigner Representation

7.8 Relations between the Wigner, Q and P Representations

7.9 Distribution Functions in Terms of Quadrature Components

7.10 Summary

8 Single-Mode Interaction

8.1 Introduction

8.2 The Jaynes–Cummings Model
 8.2.1 The Jaynes–Cummings Hamiltonian
 8.2.2 State Vector of the System
 8.2.3 Population of the Atomic Excited State

8.3 Collapses and Revivals of the Atomic Evolution

9 Open Quantum Systems

9.1 Introduction

9.2 Hamiltonian of the Multi-Mode Interaction

9.3 Derivation of the Master Equation

9.4 Spontaneous Emission and Decoherence
 9.4.1 The Lamb Shift
 9.4.2 Spontaneous Emission Rate and Decoherence
 9.4.3 Einstein’s A Coefficient

9.5 The Bloch–Siegert Shift: An Example of Non-RWA Effects

10 Heisenberg Equations of Motion

10.1 Introduction
10.2 Heisenberg Equations of Motion 158
10.3 Lorenz–Maxwell Equations 159
10.4 Langevin Equations 162
10.5 Optical Bloch Equations 164
10.6 Floquet Method 166

11 Dressed-Atom Model 175
11.1 Introduction 175
11.2 Semiclassical Dressed-Atom Model 176
11.2.1 Dressing Transformation on the Interaction Hamiltonian 177
11.2.2 Master Equation in the Dressed-Atom Basis 178
11.3 Quantum Dressed-Atom Model 180
11.4 Atom–Field Entangled States 180
11.4.1 Resonant Field, $\Delta = 0$ 182
11.4.2 Vacuum Rabi Splitting and AC Stark Effect 183
11.4.3 Non-resonant Driving, $\Delta \neq 0$ 186
11.5 Summary 189

12 Fokker–Planck Equation 193
12.1 Introduction 193
12.2 Master Equation of a Harmonic Oscillator 194
12.3 Photon Number Representation 195
12.4 P Representation: Fokker–Planck Equation 198
12.5 Drift and Diffusion Coefficients 201
12.6 Solution of the Fokker–Planck Equation 203
12.7 Stochastic Differential Equations 207

13 Quantum Trajectory Theory 213
13.1 Introduction 213
13.2 Quantum Trajectories 214
13.2.1 Formulation of the Quantum Trajectory Theory 215
13.3 Cavity QED Laser 216

14 Interaction-Free Measurements 221
14.1 Introduction 221
14.2 Negative-Result Measurements 222
14.3 Experimental Schemes of Interaction-Free Measurements
14.3.1 The Elitzur and Vaidman Scheme
14.3.2 The Kwiat et al. Scheme

15 Classical and Quantum Interference
15.1 Introduction
15.2 First-Order Coherence
15.3 Welcher Weg Problem
15.4 Second-Order Coherence
15.5 Two-Photon Interference and Quantum Non-locality
 15.5.1 Spatial Non-classical Two-Photon Interference
 15.5.2 Temporal Non-classical Two-Photon Interference
15.6 Summary

16 Atom–Atom Entanglement
16.1 Introduction
16.2 Two-Atom Systems
16.3 Entangled States of Two Identical Atoms
16.4 Entangled States of Two Non-identical Atoms
16.5 Creation of Entanglement between Two Atoms
 16.5.1 Preparation of Atoms in Entangled Symmetric State
 16.5.2 Preparation of Atoms in Entangled Antisymmetric State
 16.5.3 Creation of Two-Photon Entangled States
16.6 Quantum Interference of the Field Radiated by Two-Atom Systems
 16.6.1 First-Order Interference of the Field Radiated by a Two-Atom System
 16.6.2 Two-Photon Interference in a Two-Atom System
16.7 Summary

17 Classical and Quantum Lithography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>Classical Optical Lithography</td>
<td>272</td>
</tr>
<tr>
<td>17.3</td>
<td>Quantum Lithography</td>
<td>273</td>
</tr>
<tr>
<td>17.4</td>
<td>Summary</td>
<td>276</td>
</tr>
<tr>
<td>18</td>
<td>Laser Model in the High-Q Limit</td>
<td>279</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>18.2</td>
<td>Master Equation</td>
<td>280</td>
</tr>
<tr>
<td>18.3</td>
<td>Stochastic Differential Equations</td>
<td>281</td>
</tr>
<tr>
<td>18.4</td>
<td>Semiclassical Steady-State Solution and Stability</td>
<td>282</td>
</tr>
<tr>
<td>18.5</td>
<td>Exact Steady-State Solution</td>
<td>284</td>
</tr>
<tr>
<td>18.6</td>
<td>Laser Linewidth</td>
<td>287</td>
</tr>
<tr>
<td>18.6.1</td>
<td>Below Threshold</td>
<td>287</td>
</tr>
<tr>
<td>18.6.2</td>
<td>Above Threshold</td>
<td>288</td>
</tr>
<tr>
<td>18.7</td>
<td>Summary</td>
<td>292</td>
</tr>
<tr>
<td>19</td>
<td>Input—Output Theory</td>
<td>295</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>295</td>
</tr>
<tr>
<td>19.2</td>
<td>Input—Output Relation</td>
<td>295</td>
</tr>
<tr>
<td>19.3</td>
<td>Proof of the Input—Output Relation</td>
<td>297</td>
</tr>
<tr>
<td>20</td>
<td>Motion of Atoms in a Laser Field</td>
<td>301</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>20.2</td>
<td>Diffraction of Atoms on a Standing-Wave Laser Field</td>
<td>302</td>
</tr>
<tr>
<td>20.2.1</td>
<td>The Case $P_x = 0$ and $\Delta = 0$</td>
<td>306</td>
</tr>
<tr>
<td>20.2.2</td>
<td>The Case $P_x \neq 0$ and $\Delta = 0$</td>
<td>307</td>
</tr>
<tr>
<td>20.3</td>
<td>Radiation Force on Atoms</td>
<td>310</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Slowing and Confining Atoms</td>
<td>314</td>
</tr>
<tr>
<td>20.4</td>
<td>Summary</td>
<td>315</td>
</tr>
</tbody>
</table>

Final Remark

References 321

Index 327