LARGE STRAIN FINITE ELEMENT METHOD A PRACTICAL COURSE

Antonio Munjiza

Queen Mary, University of London

Esteban Rougier

Los Alamos National Laboratory, US

Earl E. Knight

Los Alamos National Laboratory, US

Contents

Preface		xiii	
A	Acknowledgements		xv
PART ONE FUNDAMENTALS		1	
1	Intr	roduction	3
	1.1	Assumption of Small Displacements	3
	1.2	Assumption of Small Strains	6
	1.3	Geometric Nonlinearity	6
	1.4	Stretches	8
	1.5	Some Examples of Large Displacement Large Strain	
		Finite Element Formulation	8
	1.6	The Scope and Layout of the Book	13
	1.7	Summary	13
2	Mat	trices	15
	2.1	Matrices in General	15
	2.2	Matrix Algebra	16
	2.3	Special Types of Matrices	21
	2.4	Determinant of a Square Matrix	22
	2.5	Quadratic Form	24
	2.6	Eigenvalues and Eigenvectors	24
	2.7	Positive Definite Matrix	26
	2.8	Gaussian Elimination	26
	2.9	Inverse of a Square Matrix	28
	2.10	Column Matrices	30
	2 11	Summary	32

3	Same Explicit and Itamative Salvens	25	
J	*	35	
	3.1 The Central Difference Solver	35	
	3.2 Generalized Direction Methods	43	
	3.3 The Method of Conjugate Directions	50	
	3.4 Summary	63	
4	Numerical Integration	65	
	4.1 Newton-Cotes Numerical Integration	65	
	4.2 Gaussian Numerical Integration	67	
	4.3 Gaussian Integration in 2D	70	
	4.4 Gaussian Integration in 3D	71	
	4.5 Summary	72	
5	Work of Internal Forces on Virtual Displacements	75	
	5.1 The Principle of Virtual Work	75	
	5.2 Summary	78	
PÆ	ART TWO PHYSICAL QUANTITIES	79	
6	Scalars	81	
	6.1 Scalars in General	81	
	6.2 Scalar Functions	81	
	6.3 Scalar Graphs	82	
	6.4 Empirical Formulas	82	
	6.5 Fonts	83	
	6.6 Units	83	
	6.7 Base and Derived Scalar Variables	85	
	6.8 Summary	85	
7	Vectors in 2D		
	7.1 Vectors in General	87	
	7.2 Vector Notation	91	
	7.3 Matrix Representation of Vectors	91	
	7.4 Scalar Product	92	
	7.5 General Vector Base in 2D	93	
	7.6 Dual Base	94	
	7.7 Changing Vector Base	95	
	7.8 Self-duality of the Orthonormal Base	97	
	7.9 Combining Bases	98	
	7.10 Examples	104	
	7.11 Summary	108	
8	Vectors in 3D 1		
	8.1 Vectors in 3D	109	
	8.2 Vector Bases	111	
	8.3 Summary	114	
9	Vectors in n-Dimensional Space	117	
-	9.1 Extension from 3D to 4-Dimensional Space	117	
	9.2 The Dual Base in 4D	118	

Contents

	9.3	Changing the Base in 4D	120
	9.4	Generalization to n-Dimensional Space	121
	9.5	Changing the Base in n-Dimensional Space	124
	9.6	Summary	127
10		Order Tensors	129
	10.1	The Slope Tensor	129
	10.2	First Order Tensors in 2D	131
	10.3	Using First Order Tensors	132
	10.4	Using Different Vector Bases in 2D	134
	10.5	Differential of a 2D Scalar Field as the First Order Tensor	137
		First Order Tensors in 3D	141
		Changing the Vector Base in 3D	142
		First Order Tensor in 4D	143
		First Order Tensor in n-Dimensions	147
		Differential of a 3D Scalar Field as the First Order Tensor	149
		Scalar Field in n-Dimensional Space	152
	10.12	Summary	153
11	Secon	d Order Tensors in 2D	155
	11.1	Stress Tensor in 2D	155
	11.2	Second Order Tensor in 2D	158
	11.3	Physical Meaning of Tensor Matrix in 2D	159
	11.4	Changing the Base	161
	11.5	Using Two Different Bases in 2D	163
	11.6	Some Special Cases of Stress Tensor Matrices in 2D	167
	11.7	The First Piola-Kirchhoff Stress Tensor Matrix	168
	11.8	The Second Piola-Kirchhoff Stress Tensor Matrix	169
	11.9	Summary	174
12	Secon	d Order Tensors in 3D	175
14	12.1	Stress Tensor in 3D	175
	12.1	General Base for Surfaces	175
	12.3	General Base for Forces	179 182
	12.3	General Base for Forces and Surfaces	184
	12.5	The Cauchy Stress Tensor Matrix in 3D	186
	12.6	The First Piola-Kirchhoff Stress Tensor Matrix in 3D	186
	12.7	The Second Piola-Kirchhoff Stress Tensor Matrix in 3D	188
	12.8	Summary	189
12	C	101 7 1	
13	Secon 13.1	d Order Tensors in nD Second Order Tensor in n-Dimensions	191
	13.1		191
	13.2	Summary	200
PA	RT TI	HREE DEFORMABILITY AND MATERIAL MODELING	201
14	Kinen	natics of Deformation in 1D	203
	14.1	Geometric Nonlinearity in General	203
	14.2	Stretch	205
	14.3	Material Element and Continuum Assumption	208

x	Contents

	14.4	Strain	209
		Stress	213
	14.6	Summary	214
15	Kiner	natics of Deformation in 2D	217
	15.1	Isotropic Solids	217
	15.2	Homogeneous Solids	217
	15.3	Homogeneous and Isotropic Solids	217
	15.4	Nonhomogeneous and Anisotropic Solids	218
	15.5	Material Element Deformation	221
	15.6	Cauchy Stress Matrix for the Solid Element	225
	15.7	Coordinate Systems in 2D	227
	15.8	The Solid- and the Material-Embedded Vector Bases	228
	15.9	Kinematics of 2D Deformation	229
	15.10	2D Equilibrium Using the Virtual Work of Internal Forces	231
	15.11	Examples	235
	15.12	Summary	238
16	Kinen	natics of Deformation in 3D	241
	16.1	The Cartesian Coordinate System in 3D	241
	16.2	The Solid-Embedded Coordinate System	241
	16.3	The Global and the Solid-Embedded Vector Bases	243
	16.4	Deformation of the Solid	244
	16.5	Generalized Material Element	246
	16.6	Kinematic of Deformation in 3D	247
	16.7	The Virtual Work of Internal Forces	249
	16.8	Summary	255
17	The U	Unified Constitutive Approach in 2D	257
	17.1	Introduction	257
	17.2	Material Axes	259
	17.3	Micromechanical Aspects and Homogenization	260
	17.4	Generalized Homogenization	263
	17.5	The Material Package	264
	17.6	Hyper-Elastic Constitutive Law	265
	17.7	Hypo-Elastic Constitutive Law	266
	17.8	A Unified Framework for Developing Anisotropic	
		Material Models in 2D	267
	17.9	Generalized Hyper-Elastic Material	267
	17.10	Converting the Munjiza Stress Matrix to the	
		Cauchy Stress Matrix	274
	17.11	Developing Constitutive Laws	279
		Generalized Hypo-Elastic Material	288
		Unified Constitutive Approach for Strain Rate and Viscosity	292
		Summary	293
18	The U	Unified Constitutive Approach in 3D	295
	18.1	Material Package Framework	295
	18.2	Generalized Hyper-Elastic Material	295
		Generalized Hypo-Elastic Material	299

Contents	xi
----------	----

		-
	18.4 Developing Material Models	302
	18.5 Calculation of the Cauchy Stress Tensor Matrix	302
	18.6 Summary	312
PA	ART FOUR THE FINITE ELEMENT METHOD IN 2D	315
19	2D Finite Element: Deformation Kinematics Using the Homogeneous	
	Deformation Triangle	317
	19.1 The Finite Element Mesh	317
	19.2 The Homogeneous Deformation Finite Element19.3 Summary	317
	19.5 Sullilliary	326
20	2D Finite Element: Deformation Kinematics Using Iso-Parametric	
	Finite Elements	327
	20.1 The Finite Element Library	327
	20.2 The Shape Functions	327
	20.3 Nodal Positions20.4 Positions of Material Points inside a Single Finite Element	330
	20.5 The Solid-Embedded Vector Base	331 332
	20.6 The Material-Embedded Vector Base	334
	20.7 Some Examples of 2D Finite Elements	337
	20.8 Summary	340
21	Integration of Nodal Forces over Volume of 2D Finite Elements	343
41	21.1 The Principle of Virtual Work in the 2D Finite Element Method	343
	21.2 Nodal Forces for the Homogeneous Deformation Triangle	348
	21.3 Nodal Forces for the Six-Noded Triangle	352
	21.4 Nodal Forces for the Four-Noded Quadrilateral	353
	21.5 Summary	355
22	Reduced and Selective Integration of Nodal Forces over	
	Volume of 2D Finite Elements	357
	22.1 Volumetric Locking	357
	22.2 Reduced Integration	358
	22.3 Selective Integration	359
	22.4 Shear Locking	362
	22.5 Summary	364
PA	ART FIVE THE FINITE ELEMENT METHOD IN 3D	365
23	3D Deformation Kinematics Using the Homogeneous	
	Deformation Tetrahedron Finite Element	367
	23.1 Introduction	367
	23.2 The Homogeneous Deformation Four-Noded	
	Tetrahedron Finite Element	368
	23.3 Summary	377
24	3D Deformation Kinematics Using Iso-Parametric Finite Elements	379
	24.1 The Finite Element Library	379
	24.2 The Shape Functions	379

Conte
Conte

xii

	24.3	Nodal Positions	381
	24.4	Positions of Material Points inside a Single Finite Element	382
	24.5	The Solid-Embedded Infinitesimal Vector Base	383
	24.6	The Material-Embedded Infinitesimal Vector Base	386
	24.7	Examples of Deformation Kinematics	387
	24.8	Summary	392
25	Integ	ration of Nodal Forces over Volume of 3D Finite Elements	393
	25.1	Nodal Forces Using Virtual Work	393
	25.2	Four-Noded Tetrahedron Finite Element	396
	25.3	Reduce Integration for Eight-Noded 3D Solid	399
	25.4	Selective Stretch Sampling-Based Integration for the	
		Eight-Noded Solid Finite Element	400
	25.5	Summary	401
26	Integ	ration of Nodal Forces over Boundaries of Finite Elements	403
	26.1	Stress at Element Boundaries	403
	26.2	Integration of the Equivalent Nodal Forces over the	
		Triangle Finite Element	404
	26.3	Integration over the Boundary of the Composite Triangle	407
	26.4	Integration over the Boundary of the Six-Noded Triangle	408
	26.5	Integration of the Equivalent Internal Nodal Forces over the	
		Tetrahedron Boundaries	409
	26.6	Summary	412
PA	ART S	IX THE FINITE ELEMENT METHOD IN 2.5D	415
27	Defor	rmation in 2.5D Using Membrane Finite Elements	417
	27.1	Solids in 2.5D	417
	27.2	The Homogeneous Deformation Three-Noded	
		Triangular Membrane Finite Element	419
	27.3	Summary	438
28	Defo	rmation in 2.5D Using Shell Finite Elements	439
	28.1	Introduction	439
	28.2	The Six-Noded Triangular Shell Finite Element	440
	28.3	The Solid-Embedded Coordinate System	441
	28.4	Nodal Coordinates	442
	28.5	The Coordinates of the Finite Element's Material Points	443
	28.6	The Solid-Embedded Infinitesimal Vector Base	444
	28.7	The Solid-Embedded Vector Base versus the	
		Material-Embedded Vector Base	447
	26.6	The Constitutive I are	. 440