Advances in Cryogenic Engineering
Transactions of the Cryogenic Engineering Conference — CEC

Anchorage, Alaska, USA
17–21 June 2013

Chief Technical Editor
J. G. Weisend II

Editors
Susan Breon
Jonathan Demko
Michael DiPirro
James Fesmire
Peter Kittel
Arkady Klebaner
Jennifer Marquardt
Gregory Nellis
Thomas Peterson
John Pfotenhauer
Sidney Yuan
Mark Zagarola
Al Zeller

Managing Editor
Rose Wickwire

All papers have been peer reviewed.

Sponsoring Organizations
Air Liquide
Bürkert Fluid Control Systems
Cryomech, Inc.
DeMaCo
Linde
Lydall
Meyer Tool & Manufacturing, Inc.
PHPK Technologies
SuperPower Inc.

To learn more about AIP Proceedings visit http://proceedings.aip.org
Table of Contents

PART A

Preface: Advances in Cryogenic Engineering
Peter Shirron and Wilfried Goldacker

CEC Awards

2013 Cryogenic Engineering Conference Board

CEC Technical Editors

Acknowledgments

FLUID MECHANICS AND HEAT TRANSFER I

Natural circulation loop using liquid nitrogen for cryo-detection system
Yeon Suk Choi

Effect of corrugated characteristics on the liquid nitrogen temperature field of HTS cable
Z. M. Li, Y. X. Li, Y. Q. Zhao, C. Gao, M. Qiu, G. F. Chen, M. Q. Gong, and J. F. Wu

Experimental study on the secondary evaporator of a cryogenic loop heat pipe
Ya-nan Zhao, Tao Yan, Jian-guo Li, Juan Wang, and Jingtao Liang

A helium based pulsating heat pipe for superconducting magnets
Luis Diego Fonseca, Franklin Miller, and John Pfotenhauer

Forced flow heat transfer of supercritical hydrogen for superconductor cooling
M. Shiotsu, Y. Shirai, H. Tatsumoto, K. Hata, H. Kobayashi, Y. Naruo, and H. Inatani

Forced convection heat transfer of saturated liquid hydrogen in vertically-mounted heated pipes
Hideki Tatsumoto, Yasuyuki Shirai, Masahiro Shiotsu, Koichi Hata, Yoshihiro Naruo, Hiroaki Kobayasi, and Yoshifumi Inatani
HYDROGEN SYSTEMS

Liquid hydrogen target for the COMPASS experiment

Thin-thick hydrogen target for nuclear physics

Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source
Hideki Tatsumoto, Kiichi Ohtsu, Tomokazu Aso, Yoshihiko Kawakami, and Makoto Teshigawara 66

Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen
Inmyong Park, Youngkwon Kim, Jiho Park, and Sangkwon Jeong 74

Hydrogen cooling options for MgB2-based superconducting systems
W. Stautner, M. Xu, S. Mine, and K. Amm 82

INSTRUMENTATION I

Analysis of the failures and corrective actions for the LHC cryogenics radiation tolerant electronics and its field instruments
Christoph Balle, Juan Casas, and Nicolas Vauthier 91

Optical cryostat realizations at Absolut System
T. Trollier, A. Ravex, and J. Tanchon 99

Automatic sample Dewar for MX beam-line
T. Charignon, J. Tanchon, T. Trollier, A. Ravex, and P. Theveneau 105

Using a cold radiometer to measure heat loads and survey heat leaks
M. DiPirro, J. Tuttle, T. Hait, and P. Shirron 110

Effects of electrostatic discharge on three cryogenic temperature sensor models
S. Scott Courts and Thomas B. Mott 118

Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications
R. Ramalingam, D. Boguhn, H. Fillinger, S. I. Schlachter, and M. Süßler 126

JT COOLERS

Thermodynamic analysis of cascade microcryocoolers with low pressure ratios
Ray Radebaugh 132
Sorption-based vibration-free cooler for the METIS instrument on E-ELT

Mixed-refrigerant Joule-Thomson (MR JT) mini-cryocoolers
Nir Tzabar 148

Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler
P. M. Ardhapurkar, Arunkumar Sridharan, and M. D. Atrey 155

On the possible cycles via the unified perspective of cryocoolers. Part A: The Joule-Thomson cryocooler
Ben-Zion Maytal and John M. Pfotenhauer 163

On the reachable cycles via the unified perspective of cryocoolers. Part B: Cryocoolers with isentropic expanders
Ben-Zion Maytal and John M. Pfotenhauer 171

LARGE SCALE SYSTEMS, FACILITIES AND TESTING I

Cryogenic system for the Cryomodule Test Facility at Fermilab
Michael White, Alex Martínez, Rick Bossert, Andrew Dalesandro, Michael Geynisman, Benjamin Hansen, Arkadiy Klebaner, Jerry Makara, Liujin Pei, Dave Richardson, William Soyars, and Jay Theilacker 179

Upgrade of the cryogenic CERN RF test facility
O. Pirotte, V. Benda, O. Brunner, V. Inglese, T. Koettig, P. Maesen, and B. Vullierme 187

Development of the cryogenic system of AEgIS at CERN

Progress update on cryogenic system for ARIEL E-linac at TRIUMF
A. Koveshnikov, I. Bylinskii, G. Hodgson, and D. Yosifov 201

Cryogenic system for BERLinPro

A cryogenic test stand for large superconducting solenoid magnets

Design parameters and commissioning of vertical inserts used for testing the XFEL superconducting cavities
J. Schaffran, Y. Bozhko, B. Petersen, D. Meissner, M. Chorowski, and J. Polinski 223
New vertical cryostat for the high field superconducting magnet test station at CERN

Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
H. Quack, I. Seemann, M. Klaus, Ch. Haberstroh, D. Berstad, H. T. Walnum, P. Neksa, and L. Decker

SUPERFLUID HELIUM

Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? Lessons from the LHC
Philippe Lebrun, Vittorio Parma, and Laurent Tavian

Development of a He³–He⁴ sub Kelvin active magnetic regenerative refrigerator (AMRR) with no moving parts
A. E. Jahromi and F. K. Miller

Transient heat transfer in helium II due to a sudden vacuum break
Ernesto S. Bosque, Ram C. Dhuley, and Steven W. Van Sciver

Effect of geometry of film flow passage in superfluid heat pipe on heat transfer
Suguru Takada, Soh Ishii, and Masahide Murakami

Continuous flow system for controlling phases separation near λ transition

Transient helium II heat transfer through random packed spheres
Mark H. Vanderlaan and Steven W. Van Sciver

Visualization study of bubble generation and collapse in He II under microgravity condition
Suguru Takada, Nobuhiro Kimura, Mikito Mamiya, Takahiro Okamura, Masakazu Nozawa, and Masahide Murakami

Effect of tracer particles-quantized vortices interaction on PIV measurement result
Masahide Murakami

LARGE SCALE REFRIGERATION AND LIQUEFACTION I

Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A
Cryogenic system for the MYRRHA superconducting linear accelerator
Nicolas R. Chevalier, Tomas Junquera, Jean-Pierre Thermeau, Luis Medeiros Romão,
and Dirk Vandeplassche

Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU
V. Ganni, P. Knudsen, D. Arenius, and F. Casagrande

The Hall D solenoid helium refrigeration system at JLab

Conceptual design of the JT-60SA cryogenic system
V. Lamaison, J. Beauvisage, P. Fejoz, S. Girard, R. Gonvalves, R. Gondé, V. Heloin, F. Michel,
C. Hoa, K. Kamiya, P. Roussel, J-C. Vallet, M. Wanner, and K. Yoshida

Commissioning of the liquid nitrogen thermo-siphon system for NASA-JSC Chamber-A
J. Homan, M. Montz, V. Ganni, A. Sidi-Yekhlef, P. Knudsen, S. Garcia, and J. Garza

PULSE TUBE AND STIRLING CRYOCOOLERS (AEROSPACE) I

TIRS cryocooler: Spacecraft integration and test and early flight data
R. Boyle and E. Marquardt

Microcryocooler for tactical and space applications
J. R. Olson, P. Champagne, E. Roth, T. Nast, E. Saito, V. Loung, A. C. Kenton, and C. L. Dobbins

Small high cooling power space cooler
T. V. Nguyen, J. Raab, D. Durand, and E. Tward

Raytheon's next generation compact inline cryocooler architecture
B. R. Schaefer, L. Bellis, M. J. Ellis, and T. Conrad

High efficiency pulse tube cryocoolers for aerospace applications
Haizheng Dang

Studies on an improved indigenous pressure wave generator and its testing
with a pulse tube cooler
S. Jacob, R. Karunanithi, G. S. V. L. Narsimham, J. Kumar Kranthi, C. Damu, T. Praveen,
M. Samir, and A. Mallappa

LTS MAGNET SYSTEMS I

Fabrication and assembly of a superconducting undulator for the advanced photon source
Quentin Hasse, J. D. Fuerst, Y. Ivanyushenkov, C. Doose, M. Kasa, Y. Shiroyanagi,
E. M. Trakhtenberg, and D. Skiadopoulos
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of thermosiphon cooling scheme for the production solenoid of</td>
<td>N. Dhanaraj, V. Kashikhin, T. Peterson, V. Pronskikh, and T. Nicol</td>
<td>400</td>
</tr>
<tr>
<td>the Mu2e experiment at Fermilab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>magnet for ILC cryomodules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of large aperture superferric quadrupole magnets for an in-</td>
<td>Aziz Zaghloul, Dogyun Kim, Jangyoul Kim, Mijung Kim, Myeongjin Kim, Chongcheoul Yun, and Jongwon Kim</td>
<td>416</td>
</tr>
<tr>
<td>flight fragment separator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short initial length quench on CICC of ITER TF coils</td>
<td>S. Nicollet, D. Bessette, D. Ciazynski, M. Coatanea-Gouachet, J.-L. Duchateau, F. Gauthier, B. Lacroix, and F. Rodriguez-Mateos</td>
<td>422</td>
</tr>
<tr>
<td>Quench protection analysis of the Mu2e production solenoid</td>
<td>Vadim Kashikhin, Giorgio Ambrosio, Nikolai Andreev, Michael Lamm, Thomas Nicol, Darryl Orris, and Thomas Page</td>
<td>430</td>
</tr>
<tr>
<td>Omega Muon beam line at J-PARC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL INSULATION SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade of the LHC magnet interconnections thermal shielding</td>
<td>Andrea Musso, Graeme Barlow, Alain Bastard, Maryline Charrondiere, Anna Chrul, Dimitrios Damianoglou, Guy Deferne, Gaëlle Dib, Max Duret, Michael Guinchard, Hervé Prin, Michał Strychalski, Arnaud Vande Craen, Gilles Villiger, and Loren Wright</td>
<td>448</td>
</tr>
<tr>
<td>Electrically insulated MLI and thermal anchor</td>
<td>Koji Kamiya, Masato Furukawa, Ryuta Hatakenaka, Takeshi Miyakita, Haruyuki Murakami, Kaname Kizu, Katsuhiko Tsuchiya, Yoshihiko Koidea, and Kiyoshi Yoshida</td>
<td>455</td>
</tr>
<tr>
<td>Cryogenic insulation standard data and methodologies</td>
<td>J. A. Demko, J. E. Fesmire, W. L. Johnson, and A. M. Swanger</td>
<td>463</td>
</tr>
<tr>
<td>Thermal degradation of multilayer insulation due to the presence of</td>
<td>W. L. Johnson, A. O. Kelly, and J. E. Fesmire</td>
<td>471</td>
</tr>
</tbody>
</table>
Experimental performance of MLI blanket density and compression effects for use in GE MRI cryostat design
J. E. Pienkos, S. W. VanSciver, D. Celik, and R. J. Klimas

Load responsive multilayer insulation performance testing
S. Dye, A. Kopelove, and G. L. Mills

Temperature matching of multilayer insulation to penetrations
W. L. Johnson, D. W. Plachta, N. O. Rhys, and A. O. Kelly

Emissivity measurement of coated copper and aluminum samples at 80 K
S. H. Kim, Z. A. Conway, P. N. Ostroumov, and K. W. Shepard

PULSE TUBE AND STIRLING CRYOCOOLECTORS (AEROSPACE) II

Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine
M. Chen, L. Y. Ju, and H. X. Hao

The influence of Reynolds numbers on resistance properties of jet pumps
Q. Geng, G. Zhou, and Q. Li

Pulse tube coolers for Meteosat third generation
James Butterworth, Gérald Aigouy, Clement Chassaing, Benoît Debray, and Alexandre Huguet

150K - 200K miniature pulse tube cooler for micro satellites
Clément Chassaing, James Butterworth, Gérald Aigouy, Christophe Daniel, Maurice Crespin, and Eric Duvivier

15 K pulse tube design for ECHO mission

Evaluation of cryogenic liquids ZBO storage with different solutions
Yangyang Zhang, Jianguo Li, Baojun Luo, Juan Wang, and Guotong Hong

REGENERATORS

Comparison of different regenerator geometries for AMR system
Jing Li, T. Numazawa, K. Matsumoto Matsumoto, Y. Yanagisawa, and H. Nakagome

Hydrodynamic resistance parameters for ErPr rare-earth regenerator material under steady and periodic flow conditions
Effect of flow-pressure phase on performance of regenerators in the range of 4 K to 20 K
M. A. Lewis, R. P. Taylor, P. E. Bradley, and R. Radebaugh 562

Advanced regenerator testing in the Raytheon dual-use cryocooler
B. R. Schaefer, L. Bellis, M. J. Ellis, and T. J. Conrad 570

Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material
Xiaotao Wang, Shuang Zhang, Guoyao Yu, Wei Dai, and Ercang Luo 576

Realization of the cooperation between traveling wave component and standing wave component in thermoacoustic regenerator
Zhou Gang and Li Qing 582

FLUID MECHANICS AND HEAT TRANSFER II

The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures
J. Tuttle, E. Canavan, M. DiPirro, X. Li, and P. Knollenberg 590

Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media
Yusuke Tanno, Satoshi Ito, and Hidetoshi Hashizume 597

Unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation in normal and supercritical helium conditions
S. Pietrowicz, A. Four, B. Baudouy, N. Kimura, and A. Yamamoto 605

Microchannel heat exchanger for two-phase Mixed Refrigerant Joule Thomson process
Seungwhan Baek, Jisung Lee, Cheonkyu Lee, and Sangkwan Jeong 612

Modeling results for the ITER cryogenic fore pump
D. S. Zhang, F. K. Miller, and J. M. Pfotenhauer 618

Cryodeposition of nitrogen gas on a surface cooled by helium II
R. C. Dhuley, E. S. Bosque, and S. W. Van Sciver 626

EUROPEAN SPALLATION SOURCE

Status of the ESS cryogenic system
J. G. Weisend II, C. Darve, S. Gallimore, W. Hees, J. Jurns, T. Köttig, P. Ladd, S. Molloy, T. Parker, and X. L. Wang 633

The ESS elliptical cavity cryomodules
Christine Darve, Pierre Bosland, Guillaume Devanz, Gilles Olivier, Bertrand Renard, and Jean-Pierre Thermeau 639
Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design
John M. Jurns, Harald Bäck, and Martin Gierow 647

The cryomodule test stand at the European Spallation Source
W. Hees, J. G. Weisend II, X. L. Wang, and T. Kötting 655

Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source
S. Gallimore, P. Nilsson, P. Sabbagh, A. Takibayev, J. G. Weisend II, Y. Beßler, and M. Klaus 659

The ESS spoke cavity cryomodules
Sebastien Bousson, Christine Darve, Patxi Duthil, Nuno Elias, Steve Molloy, Denis Reynet, and Jean-Pierre Thermeau 665

LARGE SCALE REFRIGERATION AND LIQUEFACTION II

Cryogenic performance and numerical modeling of a helium refrigerator for the JT-60SA coil test facility
Alexandre Serrand, Walid Abdel-Maksoud, Laurent Genini, and François-Paul Juster 673

Process design of helium refrigerators collaborated with the predesign of turbo expander

Process model and capacity upgrades of the CTI-4000 liquid helium coldbox
Benjamin Hansen, Hans Quack, and Arkadiy Klebaner 687

MULTILAYER INSULATION SYSTEMS

Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K
Joseph A. Hurd and Steven W. Van Sciver 694

Calorimeter testing of thermal degradation of multilayer insulation due to the presence of penetrations
W. L. Johnson, A. O. Kelly, K. W. Heckle, K. M. Jumper, and J. E. Fesmire 701

Simulation of MLI concerning the influence of an additional heat load on intermediate layers
Thomas Funke, Steffen Golle, and Christoph Haberstroh 708

Thermal performance study for hybrid SOFI and MLI system used in space
Xue Xiaodai, Wang Sixian, Cui Chen, Wang Junjie, and Zhou Yuan 716

Study on a fast loading high vacuum multilayer insulation (MLI)
Xian Shen, Sheng Zhang, Bo Wang, Zhihu Gan, Jianming Ying, and Chunlin Zhang 720
Thermal coupon testing of Load-Bearing Multilayer Insulation
W. L. Johnson, K. W. Heckle, and J. Hurd

HTS MAGNET SYSTEMS

Repairing and upgrading of the HTS insert in the 18T cryogen-free superconducting magnet

Design and development of a MgB₂-based sector dipole and beam transport channel for a strong-focusing cyclotron
K. Melconian, K. Damborsky, N. Glasser, E. Holik, J. Kellams, P. McIntyre, N. Pogue, and A. Sattarov

The preliminary study of the quench protection of an MgB₂

Fabrication of 1 T Bi-2223 superconducting magnet with 92 mm bore diameter at 77 K
Edmund S. Otabe, Vladimir S. Vyatkin, Masaru Kiuchi, Teruo Matsushita, Baorong Ni, Takeshi Kato, Takashi Nishimura, and Ryota Uetsuki

THERMOACOUSTIC REFRIGERATORS AND DRIVES

Simulation studies on the standing and traveling wave thermoacoustic prime movers
Mathew Skaria, K. K. Abdul Rasheed, K. A. Shafi, S. Kasthuriengan, and Upendra Behera

Experimental studies of the influence of Prandtl number on the performance of a thermoacoustic prime mover
B. V. Kamble, B. T. Kuzhiveli, Rishabh Jain, S. Prasad, S. Kasthuriengan, and U. Behera

Transient phenomena in a low cooling thermoacoustic refrigerator
R. C. Dhuley and M. D. Atrey

Experimental studies on thermoacoustic engine with gaseous mixtures
V. Ushir, K. P. Desai, H. B. Naik, and M. D. Atrey

SRF SYSTEMS I

Project X superconducting spoke resonator test cryostat 2 K conversion
M. Chen, A. Dalesandro, B. Hansen, A. Klebaner, T. Nicol, Y. Orlov, and T. Peterson

Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC
Shrikant Pattalwar, Thomas Jones, Niklas Templeton, Philippe Goudket, Peter McIntosh, Alan Wheelhouse, Graeme Burt, Ben Hall, Loren Wright, and Tom Peterson
Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN
N. Delruelle, Y. Leclercq, O. Pirotte, D. Ramos, P. Tibaron, G. Vandoni, and L. Williams 811

Two low-cost, modular sub-λ test cryostats
J. D. Fuerst and J. A. Kaluzny 819

Design and fabrication considerations for stainless steel liquid helium jackets surrounding SCRF cavities
E. C. Bonnema, E. K. Cunningham, and J. D. Rumel 827

ITER

Using fiberglass volumes for VPI of superconductive magnetic systems' insulation

Flow distribution analysis on the cooling tube network of ITER thermal shield
Kwanwoo Nam, Wooho Chung, Chang Hyun Noh, Dong Kwon Kang, Kyoung-O Kang, Hee Jae Ahn, and Hyeon Gon Lee 840

Progress and present status of ITER cryoline system
S. Badgujar, M. Bonneton, M. Chalifour, A. Forgeas, L. Serio, B. Sarkar, and N. Shah 848

Investigation of various methods for heat load measurement of ITER prototype cryoline
N. D. Shah, B. Sarkar, K. Choukekar, R. Bhattacharya, and Uday Kumar 856

Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system
Robert C. Duckworth, Larry R. Baylor, Steven J. Meitner, Stephen K. Combs, Tam Ha, Michael Morrow, T. Biewer, David A. Rasmussen, Michael P. Hechler, Robert J. H. Pearce, Mattias Dremel, and J.-C. Boissin 864

Performance evaluation approach for the supercritical helium cold circulators of ITER
H. Vaghela, B. Sarkar, R. Bhattacharya, H. Kapoor, M. Chalifour, H.-S. Chang, and L. Serio 872
DISTRIBUTION SYSTEMS

FRIB cryogenic distribution system
V. Ganni, K. Dixon, N. Laverdure, P. Knudsen, D. Arenius, M. Barrios, S. Jones, M. Johnson, and F. Casagrande 880

Choice of flexible cryostat for 2.5 km DC HTS cable to be laid in St. Petersburg
Yury V. Ivanov, Maxim A. Romashov, Sergey E. Bemert, and Victor E. Sytnikov 887

Characterization of flexible transfer lines for liquid helium. New experimental results
N. Dittmar, Ch. Haberstroh, and U. Hesse 893

Linac cryogenic distribution system maintenance and upgrades at JLab
K. Dixon, M. Wright, and V. Ganni 900