1 Introduction

1.1 What, why, and how?
 1.1.1 What?
 1.1.2 Why?
 1.1.3 How?
 1.1.4 Conservation statement
 1.1.5 The need for constitutive models
 1.1.6 Common constitutive models

1.2 Typical transport property values
 1.2.1 Viscosity: pure gases and vapors
 1.2.2 Viscosity: liquids
 1.2.3 Thermal conductivity
 1.2.4 Diffusivity

1.3 The continuum assumption and the field variables
 1.3.1 Continuum and pointwise representation
 1.3.2 Continuum vs. molecular
 1.3.3 Primary field variables
 1.3.4 Auxiliary variables

1.4 Coordinate systems and representation of vectors
 1.4.1 Cartesian coordinates
 1.4.2 Cylindrical coordinates
 1.4.3 Spherical coordinates
 1.4.4 Gradient of a scalar field

1.5 Modeling at various levels
 1.5.1 Levels based on control-volume size
 1.5.2 Multiscale models
 1.5.3 Multiscale modeling below the continuum level

1.6 Model building: general guidelines

1.7 An example application: pipe flow and tubular reactor
 1.7.1 Pipe flow: momentum transport
 1.7.2 Laminar or turbulent?
 1.7.3 Use of dimensionless numbers
 1.7.4 Pipe flow: heat transport
 1.7.5 Pipe flow: mass exchanger
 1.7.6 Pipe flow: chemical reactor

1.8 The link between transport properties and molecular models
 1.8.1 Kinetic theory concepts
 1.8.2 Liquids
 1.8.3 Transport properties of solids
Contents

1.9 Six decades of transport phenomena 45
1.10 Closure 48
Summary 49
Additional Reading 50
Problems 50

2 Examples of transport and system models 56
2.1 Macroscopic mass balance 58
2.1.1 Species balance equation 58
2.1.2 Transient balance: tracer studies 63
2.1.3 Overall mass balance 65
2.2 Compartmental models 68
2.2.1 Model equations 68
2.2.2 Matrix representation 69
2.2.3 A numerical IVP solver in MATLAB 70
2.3 Macroscopic momentum balance 72
2.3.1 Linear momentum 72
2.3.2 Angular momentum 77
2.4 Macroscopic energy balances 79
2.4.1 Single inlet and outlet 79
2.4.2 The Bernoulli equation 81
2.4.3 Sonic and subsonic flows 85
2.4.4 Cooling of a solid: a lumped model 91
2.5 Examples of differential balances: Cartesian 97
2.5.1 Heat transfer with nuclear fission in a slab 97
2.5.2 Mass transfer with reaction in a porous catalyst 99
2.5.3 Momentum transfer: unidirectional flow in a channel 101
2.6 Examples of differential models: cylindrical coordinates 102
2.6.1 Heat transfer with generation 102
2.6.2 Mass transfer with reaction 104
2.6.3 Flow in a pipe 105
2.7 Spherical coordinates 106
2.8 Examples of mesoscopic models 108
2.8.1 Tubular reactor with heat transfer 108
2.8.2 Heat transfer in a pin fin 109
2.8.3 Countercurrent heat exchanger 110
2.8.4 Counterflow: matrix method 115
Summary 116
Problems 119

3 Flow kinematics 126
3.1 Eulerian description of velocity 128
3.2 Lagrangian description: the fluid particle 128
3.3 Acceleration of a fluid particle 130
3.4 The substantial derivative 130
3.5 Dilatation of a fluid particle 132
3.6 Mass continuity 134
3.7 The Reynolds transport theorem 135
3.8 Vorticity and rotation 136
Contents

3.8 Curl in other coordinate systems
- 3.8.1 Curl in other coordinate systems 137
- 3.8.2 Circulation along a closed curve 139

3.9 Vector potential representation
- 3.9 Vector potential representation 140

3.10 Streamfunctions
- 3.10.1 Two-dimensional flows: Cartesian 141
- 3.10.2 Two-dimensional flows: polar 143
- 3.10.3 Streamfunctions in axisymmetric flows 143
- 3.10.4 The relation to vorticity: the E^2 operator 144

3.11 The gradient of velocity
- 3.11 The gradient of velocity 145

3.12 Deformation and rate of strain
- 3.12.1 The physical meaning of the rate of strain 146
- 3.12.2 Rate of strain: cylindrical 151
- 3.12.3 Rate of strain: spherical 151
- 3.12.4 Invariants of a tensor 152

3.13 Index notation for vectors and tensors
- 3.13 Index notation for vectors and tensors 152

Summary
- 4 Forces and their representations 159

4 Forces and their representations
- 4.1 Forces on fluids and their representation 160
 - 4.1.1 Pressure forces 161
 - 4.1.2 Viscous forces 163
 - 4.1.3 The divergence of a tensor 167
- 4.2 The equation of hydrostatics 169
 - 4.2.1 Archimedes’ principle 169
 - 4.2.2 The force on a submerged surface: no curvature 170
 - 4.2.3 Force on a curved surface 171
- 4.3 Hydrostatics at interfaces 172
 - 4.3.1 The nature of interfacial forces 172
 - 4.3.2 Contact angle and capillarity 174
 - 4.3.3 The Laplace–Young equation 175
- 4.4 Drag and lift forces 177

Problems
- 5 Equations of motion and the Navier–Stokes equation 184

5 Equations of motion and the Navier–Stokes equation
- 5.1 Equation of motion: the stress form 185
 - 5.1.1 The Lagrangian point particle 185
 - 5.1.2 The Lagrangian control volume 186
 - 5.1.3 The Eulerian control volume 187
- 5.2 Types of fluid behavior 189
 - 5.2.1 Types and classification of fluid behavior 189
 - 5.2.2 Stress relations for a Newtonian fluid 191
- 5.3 The Navier–Stokes equation 191
 - 5.3.1 The Laplacian of velocity 192
 - 5.3.2 Common boundary conditions for flow problems 193
- 5.4 The dimensionless form of the flow equation 195
 - 5.4.1 Key dimensionless groups 195
 - 5.4.2 The Stokes equation: slow flow or viscous flow 196
 - 5.4.3 The Euler equation 197
5.5 Use of similarity for scaleup 197
5.6 Alternative representations for the Navier–Stokes equations 201
 5.6.1 Plane flow: the vorticity–streamfunction form 201
 5.6.2 Plane flow: the streamfunction representation 201
 5.6.3 Inviscid and potential flow 202
 5.6.4 The velocity–vorticity formulation 202
 5.6.5 Slow flow in terms of vorticity 202
 5.6.6 The pressure Poisson equation 203
5.7 Constitutive models for non-Newtonian fluids 203
 Summary 205
 Problems 206

6 Illustrative flow problems 208
 6.1 Introduction 210
 6.1.1 Summary of equations 210
 6.1.2 Simplifications 211
 6.1.3 Solution methods 211
 6.2 Channel flow 212
 6.2.1 Entry-region flow in channels or pipes 212
 6.2.2 General solution 214
 6.2.3 Pressure-driven flow 215
 6.2.4 Shear-driven flow 215
 6.2.5 Gravity-driven flow 216
 6.3 Axial flow in cylindrical geometry 218
 6.3.1 Circular pipe 219
 6.3.2 Annular pipe: pressure-driven 219
 6.3.3 Annular pipe: shear-driven 220
 6.4 Torsional flow 220
 6.5 Radial flow 222
 6.6 Flow in a spherical gap 223
 6.7 Non-circular channels 224
 6.8 The lubrication approximation 227
 6.8.1 Flow between two inclined plates 227
 6.8.2 Flow in a tapered pipe 228
 6.9 External flow 230
 6.10 Non-Newtonian viscoelastic fluids 233
 6.10.1 A power-law model 233
 6.10.2 Flow of a Bingham fluid in a pipe 234
 6.10.3 The Rabinowitsch equation 236
 6.11 The effect of fluid elasticity 237
 6.12 A simple magnetohydrodynamic problem 240
 Summary 244
 Additional Reading 246
 Problems 246

7 The energy balance equation 251
 7.1 Application of the first law of thermodynamics to a moving control volume 252
 7.2 The working rate of the forces 253
Contents

7.3 Kinetic energy and internal energy equations 256
7.4 The enthalpy form 257
7.5 The temperature equation 257
7.6 Common boundary conditions 259
7.7 The dimensionless form of the heat equation 261
7.8 From differential to macroscopic 262
7.9 Entropy balance and the second law of thermodynamics 263
7.9.1 Some definitions from thermodynamics 263
Summary 267
Problems 268

8 Illustrative heat transport problems 269
8.1 Steady heat conduction and no generation 270
8.1.1 Constant conductivity 270
8.1.2 Variable thermal conductivity 273
8.1.3 Two-dimensional heat conduction problems 274
8.2 Heat conduction with generation: the Poisson equation 276
8.2.1 The constant-generation case 276
8.3 Conduction with temperature-dependent generation 277
8.3.1 Linear variation with temperature 277
8.3.2 Non-linear variation with temperature 279
8.3.3 Two-dimensional Poisson problems 281
8.4 Convection effects 282
8.4.1 Transpiration cooling 282
8.4.2 Convection in boundary layers 285
8.5 Mesoscopic models 286
8.5.1 Heat transfer from a fin 286
8.5.2 A single-stream heat exchanger 288
8.6 Volume averaging or lumping 290
8.6.1 Cooling of a sphere in a liquid 290
8.6.2 An improved lumped model 291
Summary 292
Problems 293

9 Equations of mass transfer 296
9.1 Preliminaries 298
9.2 Concentration jumps at interfaces 300
9.3 The frame of reference and Fick's law 302
9.4 Equations of mass transfer 307
9.4.1 Mass basis 308
9.4.2 Mole basis 310
9.4.3 Boundary conditions 311
9.5 From differential to macroscopic 312
9.6 Complexities in diffusion 313
Summary 316
Problems 317

10 Illustrative mass transfer problems 321
10.1 Steady-state diffusion: no reaction 322
10.1.1 Summary of equations 322
Contents

10.2 The film concept in mass-transfer analysis 328
 10.2.1 Fluid–solid interfaces 328
 10.2.2 Gas–liquid interfaces: the two-film model 331
10.3 Mass transfer with surface reaction 333
 10.3.1 Heterogeneous reactions: the film model 333
10.4 Mass transfer with homogeneous reactions 334
 10.4.1 Diffusion in porous media 334
 10.4.2 Diffusion and reaction in a porous catalyst 335
 10.4.3 First-order reaction 335
 10.4.4 Zeroth-order reaction 339
 10.4.5 Transport in tissues: the Krogh model 340
 10.4.6 nth-order reaction 342
10.5 Models for gas–liquid reaction 343
 10.5.1 Analysis for the pseudo-first-order case 346
 10.5.2 Analysis for instantaneous asymptote 347
 10.5.3 The second-order case: an approximate solution 347
 10.5.4 The instantaneous case: the effect of gas film resistance 348
10.6 Transport across membranes 350
 10.6.1 Gas transport: permeability 350
 10.6.2 Complexities in membrane transport 352
 10.6.3 Liquid-separation membranes 353
10.7 Transport in semi-permeable membranes 354
 10.7.1 Reverse osmosis 355
 10.7.2 Concentration-polarization effects 356
 10.7.3 The Kedem–Katchalsky model 358
 10.7.4 Transport in biological membranes 360
10.8 Reactive membranes and facilitated transport 360
 10.8.1 Reactive membrane: facilitated transport 360
 10.8.2 Co- and counter-transport 363
10.9 A boundary-value solver in MATLAB 364
 10.9.1 Code-usage procedure 364
 10.9.2 BVP4C example: the selectivity of a catalyst 364
Summary 367
Additional Reading 370
Problems 370

11 Analysis and solution of transient transport processes 377
11.1 Transient conduction problems in one dimension 378
11.2 Separation of variables: the slab with Dirichlet conditions 380
 11.2.1 Slab: temperature profiles 383
 11.2.2 Slab: heat flux 384
 11.2.3 Average temperature 384
11.3 Solutions for Robin conditions: slab geometry 385
11.4 Robin case: solutions for cylinder and sphere 387
11.5 Two-dimensional problems: method of product solution 388
11.6 Transient non-homogeneous problems 389
 11.6.1 Subtracting the steady-state solution 390
 11.6.2 Use of asymptotic solution 391
11.7 Semi-infinite-slab analysis
 11.7.1 Constant surface temperature 392
 11.7.2 Constant flux and other boundary conditions 393
11.8 The integral method of solution 394
11.9 Transient mass diffusion
 11.9.1 Constant diffusivity model 396
 11.9.2 The penetration theory of mass transfer 399
 11.9.3 The effect of chemical reaction 399
 11.9.4 Variable diffusivity 403
11.10 Periodic processes 404
 11.10.1 Analysis for a semi-infinite slab 405
 11.10.2 Analysis for a finite slab 407
11.11 Transient flow problems
 11.11.1 Start-up of channel flow 409
 11.11.2 Transient flow in a semi-infinite mass of fluid 409
 11.11.3 Flow caused by an oscillating plate 409
 11.11.4 Start-up of Poiseuille flow 411
 11.11.5 Pulsatile flow in a pipe 412
11.12 A PDE solver in MATLAB
 11.12.1 Code usage 413
 11.12.2 Example general code for 1D transient conduction 415
Summary 417
Additional Reading 418
Problems 419

12 Convective heat and mass transfer 425
12.1 Heat transfer in laminar flow
 12.1.1 Preliminaries and the model equations 427
 12.1.2 The constant-wall-temperature case: the Graetz problem 430
 12.1.3 The constant-flux case 434
12.2 Entry-region analysis
 12.2.1 The constant-wall-temperature case 435
 12.2.2 The constant-flux case 437
12.3 Mass transfer in film flow
 12.3.1 Solid dissolution at a wall in film flow 438
 12.3.2 Gas absorption from interfaces in film flow 439
12.4 Laminar-flow reactors
 12.4.1 A 2D model and key dimensionless groups 440
 12.4.2 The pure convection model 443
12.5 Laminar-flow reactor: a mesoscopic model
 12.5.1 Averaging and the concept of dispersion 444
 12.5.2 Non-linear reactions 446
12.6 Numerical study examples with PDEPE
 12.6.1 The Graetz problem 446
Summary 449
Problems 450

13 Coupled transport problems 453
13.1 Modes of coupling
 13.1.1 One-way coupling

12 Convective heat and mass transfer 425
12.1 Heat transfer in laminar flow
 12.1.1 Preliminaries and the model equations 427
 12.1.2 The constant-wall-temperature case: the Graetz problem 430
 12.1.3 The constant-flux case 434
12.2 Entry-region analysis
 12.2.1 The constant-wall-temperature case 435
 12.2.2 The constant-flux case 437
12.3 Mass transfer in film flow
 12.3.1 Solid dissolution at a wall in film flow 438
 12.3.2 Gas absorption from interfaces in film flow 439
12.4 Laminar-flow reactors
 12.4.1 A 2D model and key dimensionless groups 440
 12.4.2 The pure convection model 443
12.5 Laminar-flow reactor: a mesoscopic model
 12.5.1 Averaging and the concept of dispersion 444
 12.5.2 Non-linear reactions 446
12.6 Numerical study examples with PDEPE
 12.6.1 The Graetz problem 446
Summary 449
Problems 450

13 Coupled transport problems 453
13.1 Modes of coupling
 13.1.1 One-way coupling
13.1.2 Two-way coupling 455
13.2 Natural convection problems 455
 13.2.1 Natural convection between two vertical plates 455
 13.2.2 Natural convection over a vertical plate 459
 13.2.3 Natural convection: concentration effects 460
13.3 Heat transfer due to viscous dissipation 460
 13.3.1 Viscous dissipation in plane Couette flow 460
 13.3.2 Laminar heat transfer with dissipation: the Brinkman problem 461
13.4 Laminar heat transfer: the effect of viscosity variations 463
13.5 Simultaneous heat and mass transfer: evaporation 465
 13.5.1 Dry- and wet-bulb temperatures 465
 13.5.2 Evaporative or sweat cooling 468
13.6 Simultaneous heat and mass transfer: condensation 468
 13.6.1 Condensation of a vapor in the presence of a non-condensible gas 468
 13.6.2 Fog formation 472
 13.6.3 Condensation of a binary gas mixture 472
13.7 Temperature effects in a porous catalyst 476
 Summary 480
 Additional Reading 481
 Problems 481

14 Scaling and perturbation analysis 484
14.1 Dimensionless analysis revisited 485
 14.1.1 The method of matrix transformation 486
 14.1.2 Momentum problems 486
 14.1.3 Energy transfer problems 489
 14.1.4 Mass transfer problems 491
 14.1.5 Example: scaleup of agitated vessels 492
 14.1.6 Example: pump performance correlation 493
14.2 Scaling analysis 495
 14.2.1 Transient diffusion in a semi-infinite region 495
 14.2.2 Example: gas absorption with reaction 496
 14.2.3 Kolmogorov scales for turbulence: an example of scaling 496
 14.2.4 Scaling analysis of flow in a boundary layer 497
 14.2.5 Flow over a rotating disk 501
14.3 Perturbation methods 503
 14.3.1 Regular perturbation 503
 14.3.2 The singular perturbation method 506
 14.3.3 Example: catalyst with spatially varying activity 507
 14.3.4 Example: gas absorption with reversible reaction 508
 14.3.5 Stokes flow past a sphere: the Whitehead paradox 511
14.4 Domain perturbation methods 513
 Summary 515
 Additional Reading 516
 Problems 516

15 More flow analysis 523
15.1 Low-Reynolds-number (Stokes) flows 525
 15.1.1 Properties of Stokes flow 525
15.2 The mathematics of Stokes flow 527
Contents

15.2.1 General solutions: spherical coordinates 527
15.2.2 Flow past a sphere: use of the general solution 528
15.2.3 Bubbles and drops 531
15.2.4 Oseen’s improvement 533
15.2.5 Viscosity of suspensions 534
15.2.6 Nanoparticles: molecular effects 535

15.3 Inviscid and irrotational flow
15.3.1 Properties of irrotational flow 536
15.3.2 The Bernoulli equation revisited 537

15.4 Numerics of irrotational flow
15.4.1 Boundary conditions 539
15.4.2 Solutions using harmonic functions 540
15.4.3 Solution using singularities 542

15.5 Flow in boundary layers
15.5.1 Relation to the vorticity transport equation 547
15.5.2 Flat plate: integral balance 548
15.5.3 The integral method: the von Kármán method 549
15.5.4 The average value of drag 550
15.5.5 Non-flat systems: the effect of a pressure gradient 550

15.6 Use of similarity variables
15.6.1 A simple computational scheme 553
15.6.2 Wedge flow: the Falkner–Skan equation 554
15.6.3 Blasius flow 554
15.6.4 Stagnation-point (Hiemenz) flow 555

15.7 Flow over a rotating disk
Summary: Stokes flow 557
Summary: potential flow 558
Summary: boundary-layer theory 558
Additional Reading 559
Problems 559

16 Bifurcation and stability analysis
16.1 Introduction to dynamical systems 567
16.1.1 Arc-length continuation: a single-equation example 571
16.1.2 The arc-length method: multiple equations 572
16.2 Bifurcation and multiplicity of DPSs 576
16.2.1 A bifurcation example: the Frank-Kamenetskii equation 576
16.2.2 Bifurcation: porous catalyst 577
16.3 Flow-stability analysis 578
16.3.1 Evolution equations and linearized form 578
16.3.2 Normal-mode analysis 580
16.4 Stability of shear flows 581
16.4.1 The Orr–Sommerfeld equation 581
16.4.2 Stability of shear layers: the role of viscosity 583
16.4.3 The Rayleigh equation 583
16.4.4 Computational methods 584
16.5 More examples of flow instability 585
16.5.1 Kelvin–Helmholtz instability 585
16.5.2 Rayleigh–Taylor instability 586
16.5.3 Thermal instability: the Bénard problem 587
17 Turbulent-flow analysis

17.1 Flow transition and properties of turbulent flow
17.2 Time averaging
17.3 Turbulent heat and mass transfer
17.4 Closure models
17.5 Flow between two parallel plates
17.6 Pipe flow
 17.6.1 The effect of roughness
17.7 Turbulent boundary layers
17.8 Other closure models
 17.8.1 The two-equation model: the $k-e$ model
 17.8.2 Reynolds-stress models
 17.8.3 Large-eddy simulation
 17.8.4 Direct numerical simulation
17.9 Isotropy, correlation functions, and the energy spectrum
17.10 Kolmogorov's energy cascade
 17.10.1 Correlation in the spectral scale

18 More convective heat transfer

18.1 Heat transport in laminar boundary layers
 18.1.1 Problem statement and the differential equation
 18.1.2 The thermal boundary layer: scaling analysis
 18.1.3 The heat integral equation
 18.1.4 Thermal boundary layers: similarity solution
18.2 Turbulent heat transfer in channels and pipes
 18.2.1 Pipe flow: the Stanton number
18.3 Heat transfer in complex geometries
18.4 Natural convection on a vertical plate
 18.4.1 Natural convection: computations
18.5 Boiling systems
 18.5.1 Pool boiling
 18.5.2 Nucleate boiling
18.6 Condensation problems
18.7 Phase-change problems

Summary
Additional Reading
Problems
19 Radiation heat transfer

19.1 Properties of radiation 657
19.2 Absorption, emission, and the black body 657
19.3 Interaction between black surfaces 661
19.4 Gray surfaces: radiosity 664
19.5 Calculations of heat loss from gray surfaces 666
19.6 Radiation in absorbing media 670

Summary 674

Additional Reading 675

Problems 675

20 More convective mass transfer

20.1 Mass transfer in laminar boundary layers 679
 20.1.1 The low-flux assumption 679
 20.1.2 Dimensional analysis 680
 20.1.3 Scaling analysis 681
 20.1.4 The low-flux case: integral analysis 682
 20.1.5 The low-flux case: exact analysis 685

20.2 Mass transfer: the high-flux case 686
 20.2.1 The film model revisited 686
 20.2.2 The high-flux case: the integral-balance model 688
 20.2.3 The high-flux case: the similarity-solution method 689

20.3 Mass transfer in turbulent boundary layers 689

20.4 Mass transfer at gas–liquid interfaces 691
 20.4.1 Turbulent films 691
 20.4.2 Single bubbles 692
 20.4.3 Bubble swarms 693

20.5 Taylor dispersion 693

Summary 696

Additional Reading 696

Problems 697

21 Mass transfer: multicomponent systems

21.1 A constitutive model for multicomponent transport 701
 21.1.1 Stefan–Maxwell models 701
 21.1.2 Generalization 702

21.2 Non-reacting systems and heterogeneous reactions 703
 21.2.1 Evaporation in a ternary mixture 703
 21.2.2 Evaporation of a binary liquid mixture 704
 21.2.3 Ternary systems with heterogeneous reactions 707

21.3 Application to homogeneous reactions 709
 21.3.1 Multicomponent diffusion in a porous catalyst 709
 21.3.2 MATLAB implementation 710

21.4 Diffusion-matrix-based methods 713

21.5 An example of pressure diffusion 717

21.6 An example of thermal diffusion 719
22 Mass transport in charged systems

22.1 Transport of charged species: preliminaries
 22.1.1 Mobility and diffusivity
 22.1.2 The Nernst–Planck equation
 22.1.3 Potential field and charge neutrality

22.2 Electrolyte transport across uncharged membranes

22.3 Electrolyte transport in charged membranes

22.4 Transport effects in electrodialysis

22.5 Departure from electroneutrality

22.6 Electro-osmosis

22.7 The streaming potential

22.8 The sedimentation potential

22.9 Electrophoresis

22.10 Transport in ionized gases

Summary

Additional Reading

Problems